PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the use of selected 4th generation nuclear reactors in marine power plants

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article provides a review of the possibility of using different types of reactors to power ships. The analyses were carried out for three different large vessels: a container ship, a liquid gas carrier and a bulk carrier. A novelty of this work is the analysis of the proposal to adapt marine power plants to ecological requirements in shipping by replacing the conventional propulsion system based on internal combustion engines with nuclear propulsion. The subjects of comparison are primarily the dimensions of the most important devices of the nuclear power plant and the preliminary fitness analysis. It was assumed for this purpose that the nuclear power plant fits in the engine room compartment and uses the space left after the removal of the combustion engines. At the same time, this propulsion provides at all times sufficient energy for port, technological and shipping operations at an economically justifiable speed. For deep-sea vessels, which are supposed to reach null emissions of CO, CO2, NOx, SOx and H2O, this is one of the most reasonable solutions. Finally the paper proves that all the above-mentioned marine functions could be effectively applied in power plants equipped with 4th generation nuclear reactors.
Rocznik
Tom
Strony
76--84
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology Faculty of Mechanical Engineering and Ship Technology Institute of Naval Architecture and Ocean Engineering Narutowicza , 80-233 Gdańsk Poland
autor
  • Gdańsk University of Technology Faculty of Mechanical Engineering and Ship Technology Institute of Naval Architecture and Ocean Engineering Narutowicza , 80-233 Gdańsk Poland
  • Department of Turbine Dynamics and Diagnostics Institute of Fluid Flow Machinery Polish Academy of Sciences Fiszera, 80-231 Gdańsk Poland
  • Gdańsk University of Technology Faculty of Mechanical Engineering and Ship Technology Institute of Naval Architecture and Ocean Engineering Narutowicza , 80-233 Gdańsk Poland
Bibliografia
  • 1. C. Sui, D. Stapersma, K. Visser, P. de Vos, and Y. Ding, “Energy effectiveness of ocean-going cargo ship under various operating conditions,” Ocean Eng., vol. 190, no. 145, p. 106473, 2019, doi: 10.1016/j.oceaneng.2019.106473.
  • 2. M. Dzida, “On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine, at the main engine - steam turbine mode of cooperation,” Polish Marit. Res., vol. 16, no. 1, pp. 47–52, Jan. 2009, doi: 10.2478/ v10012-008-0010-z.
  • 3. Ł. Breńkacz, “The Experimental Identification of the Dynamic Coefficients of two Hydrodynamic Journal Bearings Operating at Constant Rotational Speed and Under Nonlinear Conditions,” Polish Marit. Res., vol. 24, no. 4, pp. 108–115, Dec. 2017, doi: 10.1515/pomr-2017-0142.
  • 4. Ł. Breńkacz, G. Żywica, M. Drosińska-Komor, and N. Szewczuk-Krypa, “The Experimental Determination of Bearings Dynamic Coefficients in a Wide Range of Rotational Speeds, Taking into Account the Resonance and Hydrodynamic Instability,” in Dynamical Systems in Applications, vol. 249, J. Awrejcewicz, Ed. Cham: Springer International Publishing, 2018, pp. 13–24.
  • 5. S. Y. Gómez and D. Hotza, “Current developments in reversible solid oxide fuel cells,” Renew. Sustain. Energy Rev., vol. 61, pp. 155–174, 2016, doi: 10.1016/j.rser.2016.03.005.
  • 6. N. Szewczuk-Krypa, M. Drosińska-Komor, J. Głuch, and L. Breńkacz, “Comparison Analysis of Selected Nuclear Power Plants Supplied with Helium from High-Temperature Gas-Cooled Reactor,” Polish Marit. Res., vol. 25, no. s1, pp. 204–210, 2018, doi: 10.2478/pomr-2018-0043.
  • 7. D. F. Skripnuk, I. O. Iliyushchenko, S. V Kulik, and M. M. Stepanova, “Analysis of the current state of the Northern Sea Route and the potential development of the icebreaker fleet,” IOP Conf. Ser. Earth Environ. Sci., vol. 539, no. 1, p. 012129, Jul. 2020, doi: 10.1088/1755-1315/539/1/012129.
  • 8. I. Gospić, I. Glavan, I. Poljak, and V. Mrzljak, “Energy, economic and environmental effects of the marine diesel engine trigeneration energy systems,” J. Mar. Sci. Eng., vol. 9, no. 7, 2021, doi: 10.3390/jmse9070773.
  • 9. L. O. Freire and D. A. De Andrade, “Historic survey on nuclear merchant ships,” Nucl. Eng. Des., vol. 293, pp. 176–186, 2015, doi: 10.1016/j.nucengdes.2015.07.031.
  • 10. T. Ishida and T. Yoritsune, “Effects of ship motions on natural circulation of deep sea research reactor DRX,” Nucl. Eng. Des., vol. 215, no. 1–2, pp. 51–67, Jun. 2002, doi: 10.1016/S0029-5493(02)00041-9.
  • 11. H. Iida, Y. Ishizaka, Y.-C. Kim, and C. Yamaguchi, “Design Study of the Deep-Sea Reactor X,” Nucl. Technol., vol. 107, no. 1, pp. 38–48, Jul. 1994, doi: 10.13182/NT94-A34996.
  • 12. B. H. Yan, “Review of the nuclear reactor thermal hydraulic research in ocean motions,” Nucl. Eng. Des., vol. 313, pp. 370–385, 2017, doi: 10.1016/j.nucengdes.2016.12.041.
  • 13. K. Lee, K. Lee, J. Ik, Y. Hoon, and P. Lee, “A new design concept for offshore nuclear power plants with enhanced safety features,” Nucl. Eng. Des., vol. 254, pp. 129–141, 2013, doi: 10.1016/j.nucengdes.2012.09.011.
  • 14. N. 18. D. A. Arostegui and M. Holt, “Advanced Nuclear Reactors : Technology Overview and Current Issues Advanced Nuclear Reactors : Technology Overview and Current Issues” Congressional Research. Service. Report R45706, Washington D.C.,” 2019.
  • 15. H. Ōi and K. Tanigaki, “The ship design of the First Nuclear Ship in Japan,” Nucl. Eng. Des., vol. 10, no. 2, pp. 211–219, Jun. 1969, doi: 10.1016/0029-5493(69)90040-5.
  • 16. Y. Chikazawa, K. Aizawa, T. Shiraishi, and H. Sakata, “Experimental demonstration of flow diodes applicable to apassive decay heat removal system for sodium-cooled reactors,” J. Nucl. Sci. Technol., vol. 46, no. 4, pp. 321–330, 2009, doi: 10.1080/18811248.2007.9711537.
  • 17. “Romawa B.V. The Nuclear Gas Turbine. The NEREUS project, Huzarenlaan 15, 7215 ED, Joppe, The Netherlands, Leaflet.,” no. April, p. 7215, 2004.
  • 18. D. A. Arostegui and M. Holt, “Advanced Nuclear Reactors : Technology Overview and Current Issues Advanced Nuclear Reactors : Technology Overview and Current Issues” Congressional Research. Service. Report R45706, Washington D.C.,” 2019.
  • 19. IAEA, “Nuclear power reactors in the world, 2020 edition,” At. Energy, no. 1, p. 81, 2020.
  • 20. Significant Ships, “Annual Report 2018,” 2018.
  • 21. J. M. Kendall, “IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies ICTP – Trieste , Italy , 18-30 May 2008 Gas-Cooled Reactors – Technology Options , Operating Research Reactors and,” no. May, 2008.
  • 22. M. Przybylski and J. Głuch, “Selected design and construction aspects of supercritical steam generators for high temperature reactors,” Arch. Energ., vol. XLII, no. 2, pp. 113–120, 2012.
  • 23. D. L. Moses, Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP), no. August. OAK RIDGE NATIONAL LABORATORY, 2010.
  • 24. A. C. Kadak et al., “Modular Pebble Bed Reactor, Project University Research Consortium, Annual Report,” 2000.
  • 25. A. Błaszczyk, J. Głuch, and A. Gardzilewicz, “Operating and economic conditions of cooling water control for marine steam turbine condensers,” Polish Marit. Res., vol. 18, no. 3, pp. 48–54, 2011, doi: 10.2478/v10012-011-0017-8.
  • 26. G. Żywica, T. Z. Kaczmarczyk, Ł. Breńkacz, M. Bogulicz, A. Andrearczyk, and P. Bagiński, “Investigation of dynamic properties of the microturbine with a maximum rotational speed of 120 krpm-predictions and experimental tests,” J. Vibroengineering, vol. 22, no. 2, pp. 298–312, 2020, doi: 10.21595/jve.2019.20816.
  • 27. Ł. Breńkacz, G. Żywica, and M. Bogulicz, “Selection of the oil-free bearing system for a 30 kW ORC microturbine,” J. Vibroengineering, vol. 21, no. 2, pp. 318–330, Mar. 2019, doi: 10.21595/jve.2018.19980.
  • 28. K. Dominiczak, M. Drosińska-Komor, R. Rządkowski, and J. Głuch, “Optimisation of turbine shaft heating process under steam turbine run-up conditions,” Arch. Thermodyn., vol. 41, no. 4, pp. 255–268, 2020, doi: 10.24425/ ather.2020.135863.
  • 29. B. Łuniewicz and K. Kietliński, “ALSTOM POWER experience i large steam turbine moderisation, Polish Academy of Sciences, ‘Basic problems of energetical machinery,’” 2003.
  • 30. T. Kowalczyk, J. Badur, and P. Ziółkowski, “Comparative study of a bottoming SRC and ORC for Joule–Brayton cycle cooling modular HTR exergy losses, fluid-flow machinery main dimensions, and partial loads,” Energy, vol. 206, Sep. 2020, doi: 10.1016/j.energy.2020.118072.
  • 31. P. Ziółkowski, T. Kowalczyk, S. Kornet, and J. Badur, “On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat,” Energy Convers. Manag., vol. 146, pp. 158–173, Aug. 2017, doi: 10.1016/j.enconman.2017.05.028.
  • 32. P. Ziółkowski, J. Badur, and P. J. Ziółkowski, “An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski’s idea,” Energy, vol. 185, pp. 763–786, 2019, doi: 10.1016/j.energy.2019.06.160.
  • 33. P. Ziólkowski et al., “Comprehensive thermodynamic analysis of steam storage in a steam cycle in a different regime of work: A zero-dimensional and three-dimensional approach,” J. Energy Resour. Technol., vol. 143, no. 10, pp. 1–27, Aug. 2021, doi: 10.1115/1.4052249.Eng. Des., vol. 4, no. 2, pp. 138–162, 1966, doi: 10.1016/0029-5493(66)90088-4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3785d48-d92a-4e2a-b815-6d334bf4f3fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.