PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A numerical approach to predict sulphur dioxide emissions during switchgrass combustion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The demand for a net reduction of carbon dioxide and restrictions on energy efficiency make thermal conversion of biomass a very attractive alternative for energy production. However, sulphur dioxide emissions are of major environmental concern and may lead to an increased corrosion rate of boilers in the absence of sulfatation reactions. Therefore, the objective of the present study is to evaluate the kinetics of formation of sulphur dioxide during switchgrass combustion. Experimental data that records the combustion process and the emission formation versus time, carried out by the National Renewable Energy Institute in Colorado (US), was used to evaluate the kinetic data. The combustion of switchgrass is described sufficiently accurate by the Discrete Particle Method (DPM). It predicts all major processes such as heating-up, pyrolysis, combustion of switchgrass by solving the differential conservation equations for mass and energy. The formation reactions of sulphur dioxide are approximated by an Arrhenius-like expression including a pre-exponential factor and an activation energy. Thus, the results predicted by the Discrete Particle Method were compared to measurements and the kinetic parameters were subsequently corrected by the least square method until the deviation between measurements and predictions was minimised. The determined kinetic data yielded good agreement between experimental data and predictions.
Rocznik
Strony
121--137
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Université du Luxembourg, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
  • Université du Luxembourg, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
Bibliografia
  • 1. Aho M., Silvennoinen J, 2004. Preventing chlorine deposition on heat transfer surfaces with aluminium-silicon rich biomass residue and additive. Fuel, 83, 1299–1305. DOI: 10.1016/j.fuel.2004.01.011.
  • 2. Aho M., Ferrer E., 2005. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass. Fuel, 84, 201–212. DOI: 10.1016/j.fuel.2004.08.022.
  • 3. Chapman P., 1996. CFD enhances waste combustion design and modification. Combustion Canada`96. Ottawa, Ontario, Canada.
  • 4. Dayton D.C., French R.J., Milne T.A., 1995. Direct observation of alkali vapor release during biomass combustion and gasification. 1. Application of molecular beam/mass spectrometry to switchgrass combustion. Energy Fuels, 9, 855–865. DOI: 10.1021/ef00053a018.
  • 5. Dullien F.A.L., 1979. Porous media fluid transport and pore structure. San Diego, Academic Press.
  • Elliott M.A., 1981. Chemistry of coal utilization. Wiley, New York.
  • 6. Ericsson K., 2007. Co-firing — A strategy for bioenergy in Poland? Energy, 32, 1838–1847. DOI: 10.1016/j.energy.2007.03.011.
  • 7. Gronli M., 1996. A theoretical and experimental study of the thermal degradation of biomass. NTNU, Trondheim.
  • 8. Hänel D., 2004. Molekulare Gasdynamik. Springer-Verlag, Berlin, Heidelberg.
  • 9. Kaume M., 2003. Transportvorgänge in Der Verfahrenstechnik. Springer. Berlin, Germany.
  • 10. Kaye G.W.C., Laby T.H., 2002. Handbook of Physics. Springer, New York.
  • 11. Knudsen J.N., Jensen P.A., Dam-Johansen K.. 2004a. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy Fuels, 18, 1385–1399. DOI: 12. 10.1021/ef049944q.
  • 12. Knudsen J.N., Jensen P.A., Lin W., Dam-Johansen K., 2005. Secondary capture of chlorine and sulfur during thermal conversion of biomass. Energy Fuels, 19, 606–617. DOI: 10.1021/ef049874n.
  • 13. Knudsen J.N., Jensen P.A., Lin W., Frandsen F.J., Dam-Johansen K., 2004b. Sulfur transformation during thermal conversion of herbaceous biomass. Energy Fuels, 18, 810–819. DOI: 10.1021/ef034085b.
  • 14. Koyuncu T., Pinar Y., 2007. The emissions from a space-heating biomass stove. Biomass Bioenergy, 31, 73–79. DOI: 10.1016/j.biombioe.2006.06.014.
  • 15. Kulah G., 2010. Validation of a FBC model for co-firing of hazelnut shell with lignite against experimental data. Exp. Therm. Fluid Sci., 34, 646–655. DOI: 10.1016/j.expthermflusci.2009.12.006.
  • 16. Kulasekaran S., Linjewile T.M., Agarwal P.K., Biggs M.J., 1998. Combustion of porous char particle in an incipiently fluidized bed. Fuel, 77, 1549–1560. DOI: 10.1016/S0016-2361(98)00091-X.
  • 17. Langn T., Jensen P.A., Knudsen J.N., 2006. The effects of Ca-based sorbents on sulfur retention in bottom ash from grate-fired annual biomass. Energy Fuels, 20, 796–806. DOI: 10.1021/ef050243i.
  • 18. Laurendeau N.M., 1978. Heterogeneous kinetics of coal char gasification and combustion. Prog. Energy Combust. Sci., 4, 221–270. DOI: 10.1016/0360-1285(78)90008-4.
  • 19. Lee J.C., Yetter R.A., Dryer F.L., 1995. Transient numerical modelling of carbon ignition and oxidation. Combust. Flame, 101, 387–398. DOI: 10.1016/0010-2180(94)00207-9.
  • 20. Lee J.C., Yetter R.A., Dryer F.L., 1996. Numerical simulation of laser ignition of an isolated carbon particle in quiescent environment. Combust. Flame, 105, 591–599. DOI: 10.1016/0010-2180(96)00221-0.
  • 21. Man Y.H., Byeong R., 1994. A numerical study on the combustion of a single carbon particle entrained in a steady flow. Combust. Flame, 97, 1–16. DOI: 10.1016/0010-2180(94)90112-0.
  • 22. Matsuda H., Ozawa S., Naruse K., Ito K., Kojima Y., Yanase T., 2005. Kinetics of HCl emission from inorganic chlorides in simulated municipal wastes incineration conditions. Chem. Eng. Sci., 60, 545–552. DOI: 10.1016/j.ces.2004.07.13110.1016/j.ces.2004.07.131.
  • 23. McLaughlin S., Bouton J., Bransby D., Conger B., Ocumpaugh W., Parrish D., Taliaferro C., Vogel K.,
  • Wullschleger S., 1999. Developing switchgrass as a bioenergy crop, In: Janick J. (Ed.) Perspectives on new crops and new uses, 282–299. ASHS Press, Alexandria, VA.
  • 24. Michelsen H.P., Frandsen F., Dam-Johansen K., Larsen O.H., 1998. Deposition and high temperature corrosion in a 10 MW straw fired boiler. Fuel Process. Technol., 54, 95–108. DOI: 10.1016/S0378-3820(97)00062-3.
  • 25. Miller R.S., Bellan J., 1997. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust. Sci. Technol., 126, 97–137. DOI: 10.1080/00102209708935670.
  • 26. Miranda T., Román S., Montero I., Nogales-Delgado S., Arranz J.I., Rojas C.V., González J.F., 2012. Study of the emissions and kinetic parameters during combustion of grape pomace: Dilution as an effective way to reduce pollution. Fuel Process. Technol., 103, 160–165. DOI: 10.1016/j.fuproc.2011.10.002.
  • 27. Misra M.K., Ragland K.W., Baker A.J., 1993. Wood ash composition as a function of furnace temperature. Biomass Bioenergy, 4, 103–116. DOI: 10.1016/0961-9534(93)90032-Y.
  • 28. Nielsen H.P., Frandsen F.J., Dam-Johansen K., Baxter L.L., 2000. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers. Progress Energy Combust. Sci., 26, 283–298. DOI: 10.1016/S0360-1285(00)00003-4.
  • 29. Peters B., 1999. Classification of combustion regimes in a packed bed of particles based on relevant time and length scales. Combust. Flame, 116, 297–301. DOI: 10.1016/S0010-2180(98)00048-0.
  • 30. Peters B., 2003. Thermal conversion of solid fuels. WIT Press, Southampton.
  • 31. Peters B., Raupenstrauch H., 2009. Modelling moving and fixed bed combustion, In: Winter F., Lackner M., Agarwal A. (Eds.) Combustion Handbook. Wiley.
  • 32. Roy M.M., Corscadden K.W., 2012. An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Applied Energy, 99, 206–212. DOI: 10.1016/j.apenergy.2012.05.003.
  • 33. Schönbucher A., 2002. Thermische Verfahrenstechnik. Springer.
  • 34. Shih-I P., 1977. Two-Phase Flows. Vieweg Tracts in Pure and Applied Physics, Braunschweig.
  • 35. Specht E., 1993. Kinetik Der Abbaureaktionen. TU Clausthal-Zellerfeld.
  • 36. VanLith S.C., Alonso-Ramirez V., Jensen P.A., Frandsen F.J., Glarborg P., 2006. Release to the gas phase of inorganic elements during wood combustion. Part 1: Development and evaluation of quantification methods. Energy Fuels, 20, 964–978. DOI: 10.1021/ef050131r.
  • 37. Verma V.K., Bram S., Gauthier G., De Ruyck J., 2011. Performance of a domestic pellet boiler as a function of operational loads: Part-2. Biomass Bioenergy, 35, 272–279. DOI: 10.1016/j.biombioe.2010.08.043.
  • 38. Wiinikka H., Gebart R., Boman C., Bostrom D., Öhman M., 2007. Influence of fuel ash composition on high temperature aerosol formation in fixed bed combustion of woody biomass pellets. Fuel, 86, 181–193. DOI: 10.1016/j.fuel.2006.07.001.
  • 39. Zheng Y., Jensen P.A., Sander B., Junker H., 2007. Ash transformation during co-firing coal and straw. Fuel, 86, 1008–1020. DOI: 10.1016/j.fuel.2006.10.008.
  • 40. Ściążko M., Zuwała J., Pronobis M., Winnicka G., 2007. Problemy Związane Ze Współpalaniem Biomasy w Kotlach Energetycznych. Instytyt Chemicznej Przeróbki Węgla, Politechnika Śląska, Zabrze, Poland (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a377c92f-1e71-45b3-bd47-402f4c16d139
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.