PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The identification method of the sources of radiated electromagnetic disturbances on the basis of measurements in the near-field zone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of tests of a simple device, consisting in the location of a source of disturbance emission by means of measurements within the near field with manual positioning of the measuring probe. The effectiveness of the source of disturbance location was finally verified by a positive result of the radiated emission tests in the EMC laboratory using a standardised method.
Twórcy
  • Department of Automation and Robotics, ŁUKASIEWICZ Research Network – Industrial Research Institute for Automation and Measurements PIAP, Warsaw, Poland
Bibliografia
  • [1] “Directive 2014/30/EU of the European Parliament and of the Council of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast)”, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0030&rid=4.ccessed on: 2022-08-30.
  • [2] “EN IEC 61000-6-1:2019 Electromagnetic compatibility (EMC) – Part 6-1: Generic standards – Immunity standard for residential, commercial and light-industrial environments,“ https://standards.iteh.ai/catalog/standards/clc/1a6d24ca-4ba7-4d0d-a66f-c3d1f226ca0b/en--iec-61000-6-1-2019 Accessed on: 2022-08-30.
  • [3] “EN IEC 61000-6-2:2019 Electromagnetic compatibility (EMC) – Part 6-2: Generic standards –Immunity standard for industrial environment,“https://standards.iteh.ai/catalog/standards/clc/6cfd8fa2-dfaf-459d-8d98-814154d1bfde/en--iec-61000-6-2-2019 Accessed on: 2022-08-30.
  • [4] “EN IEC 61000-6-3:2021 Electromagnetic compatibility (EMC) – Part 6-3: Generic standards –Emission standard for equipment in residential environments,“ https://standards.iteh.ai/catalog/standards/clc/a145bf06-c5b5-4e0d-9af3--dd51c414b7f9/en-iec-61000-6-3-2021 Accessed on: 2022-08-30.
  • [5] “EN IEC 61000-6-4:2019 Electromagnetic compatibility (EMC) – Part 6-4: Generic standards –Emission standard for industrial environments,“ https://standards.iteh.ai/catalog/standards/clc/70229e6a-bc18-4d7d-81f7-96babbfea9ec/en-iec-61000-6-4-2019 Accessed on: 2022-08-30.
  • [6] “NO-06-A200:2012 Kompatybilność elektromagnetyczna. Poziomy dopuszczalne emisji ubocznych i odporności na narażenia elektromagnetyczne”. (in Polish)
  • [7] H. W. Ott, Noise Reduction Techniques in Electronic Systems, 2nd Edition, Wiley-Interscience, 1988.
  • [8] D. J. Bem, Anteny i rozchodzenie się fal radiowych, NT Warszawa, 1973. (in Polish)
  • [9] “CISPR 16-2-3:2016 Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements,“ https://standards.iteh.ai/catalog/standards/iec/645f733a-84a9--4ec8-988b-7f1852e118da/cispr-16-2-3-2016 Accessed on: 2022-08-30.
  • [10] T. MacNamara, Handbook of Antennas for EMC,2nd ed., Artech House, 2018.
  • [11] V. Kraz, “Near-Field Methods of Locating EMI Sources,” https://www.ramayes.com/download/OnFILTER/OnFILTER-Near-Field-Methods-ofLocating-EMI-Sources.pdf, 1995. Accessed on: 2022-08-30.
  • [12] F. Benyoubi, M. Feliachi, Y. Le Bihan, M. Bensetti and L. Pichon, “Implementation of tools for electromagnetic compatibility studies in he near field”. In: 2016 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2016, 1–6, 10.1109/CISTEM.2016.8066810.
  • [13] K.-Y. See, N. Fang, L.-B. Wang, W. Soh, T. Svimonishvili, M. Oswal, W.-Y. Chang and W.-J. Koh, “An Empirical Approach to Develop Near-Field Limit for Radiated-Emission Compliance Check”,IEEE Transactions on Electromagnetic Compatibility, vol. 56, no. 3, 2014, 691–698, 10.1109/TEMC.2014.2302003.
  • [14] J. Wang, Z. Yan, C. Fu, Z. Ma and J. Liu, “Near-Field Precision Measurement System of High-Density Integrated Module”, IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021, 1–9,10.1109/TIM.2021.3078000.
  • [15] A.-M. Silaghi, R.-A. Aipu, A. De Sabata and P.-M. Nicolae, “Near-field scan technique for reducing radiated emissions in automotive EMC”. In: 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC),2018, 831–836, 10.1109/ISEMC.2018.8393897.
  • [16] “IEC TS 61967-3:2014 Integrated circuits – Measurement of electromagnetic emissions – Part 3: Measurement of radiated emissions – Surface scan method,“ https://standards.iteh.ai/catalog/standards/iec/806cb255-99c1-4aca-ac84--8db6623bf6e0/iec-ts-61967-3-2014 Accessed on: 2022-08-30.
  • [17] G.-Y. Cho, J. Jin, H.-B. Park, H. H. Park and C. Hwang, “Assessment of Integrated Circuits Emissions With an Equivalent Dipole-Moment ethod”, IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 2, 2017, 633–638,10.1109/TEMC.2016.2633332.
  • [18] “EN 61967-2:2005 Integrated circuits – Measurement of electromagnetic emissions, 150 kHz to 1 GHz – Part 2: Measurement of radiated emissions – TEM cell and wideband TEM cell method,“ https://standards.iteh.ai/catalog/standards/clc/41042894-a36d-4123-b1cd1e85986b06ee/en-61967-2-2005 Accessed on: 2022-08-30.
  • [19] W. Liu, Z. Yan, J. Wang, Z. Ning and Z. Min, “Ultrawideband Real-Time Monitoring System Based on Electro-Optical Under-Sampling and Data Acquisition for Near-Field Measurement”, IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 9, 2020, 6603–6612, 10.1109/TIM.2020.2968755.
  • [20] H. Weng, D. G. Beetner and R. E. DuBroff, “Prediction of Radiated Emissions Using Near-Field Measurements”, IEEE Transactions on Electromagnetic Compatibility, vol. 53, no. 4, 2011, 891–899, 10.1109/TEMC.2011.2141998.
  • [21] Z. Yu, J. A. Mix, S. Sajuyigbe, K. P. Slattery and J. Fan, “An Improved Dipole-Moment Model Based on Near-Field Scanning for Characterizing Near-Field Coupling and Far-Field Radiation From an IC”, IEEE Transactions on Electromagnetic Compatibility, vol. 55, no. 1, 2013, 97–108, 10.1109/TEMC.2012.2207726.
  • [22] R. Zaridze, V. Tabatadze, I. Petoev, D. Kakulia and T. Tchabukiani, “Emission source localization using the method of auxiliary sources”. In: 2016 International Symposium on Electromagnetic Compatibility – EMC EUROPE, 2016, 829–834, 0.1109/EMCEurope.2016.7739167.
  • [23] W. Liu, Z. Yan and Z. Min, “The Far-field Estimation for Microstrip Line Based on Near-field Scanning”. In: 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 2018, 1–4, 10.1109/ISAPE.2018.8634064.
  • 24] J. Wang, Z. Yan, W. Zhang, T. Kang and M. Zhang, “An effective method of near to far field transformation based on dipoles model”. In: 2015 Asia--Pacific Microwave Conference (APMC), vol. 3, 2015, 1–3, 10.1109/APMC.2015.7413331.
  • [25] S. Yong, S. Yang, L. Zhang, X. Chen, D. J. Pommerenke and V. Khilkevich, “Passive Intermodulation Source Localization Based on Emission Source Microscopy”, IEEE Transactions on Electromagnetic Compatibility, vol. 62, no. 1, 2020, 266–271, 10.1109/TEMC.2019.2938634.
  • [26] L. Zhang, V. V. Khilkevich, X. Jiao, X. Li, S. Toor, . U. Bhobe, K. Koo, D. Pommerenke and J. L. Drewniak, “Sparse Emission Source Microscopy for Rapid Emission Source Imaging”, IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 2, 2017, 729–738, 10.1109/TEMC.2016.2639526.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3740783-4176-465f-9111-345cce529098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.