PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Benefits and Risks of Liquid Sewage Sludge Recycling in Agricultural Spreading – A Case Study of WWTP of Skhirat, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The sewage sludge recycling as an agricultural land resource has received a great deal of attention worldwide. This practice has highly increased because of ever-increasing municipal wastewater production and the awareness of its fertilizing potential as amendment resources. However, there is a concern about land spreading linked mainly to health associated risks due to the presence of diverse pollutants. Thus, sewage spreading management is a key factor the guarantees benefits and avoids risks. The present work aimed to investigate the benefits and risks of sewage sludge (SS) application on agricultural land. To this end, physicochemical main parameters and bacteriological indicators, fecal coliform (FC) and fecal streptococcus (FS), of the sewage sludge generated form WWTP of Skhirat, Morocco, were performed during the period 2018–2019. The obtained results of physicochemical parameters reveal high concentration of organic matter in SS, which reach 96.3 mg/l, and in nutrients. Indeed, total Kjeldahl nitrogen TKN reaches a maximum of 3791 mg/l, potassium K+ reaches 58.71 mg/l. In addition, the average content of FC and FS are around 5.40 CFU/ml and 5.85 CFU/ml, respectively, whereas total phosphorus reaches 508.25 mg/l. In addition, concentrations of micronutrients such as Cl-, SO42-, Ca2+, Mg2+, and Na+ were high, which is interesting and could benefit for both soils and plant. Furthermore, this sewage sludge contains high concentration of heavy metals, mainly zinc and copper which could limit reuse in land spreading. The obtained results were compared to the applied standards and directives established within the framework of the agricultural spreading.
Rocznik
Strony
277--288
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environment, CERN2D, ENSAM, Mohammed V University in Rabat, 10100 Morocco
  • Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environment, CERN2D, ENSAM, Mohammed V University in Rabat, 10100 Morocco
  • Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environment, CERN2D, ENSAM, Mohammed V University in Rabat, 10100 Morocco
  • Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterials, Water and Environment, CERN2D, ENSAM, Mohammed V University in Rabat, 10100 Morocco
  • National Laboratory for Studies and Pollution Monitoring-Ministry of Energy, Mines and Environment, Department of Environment, Rabat, Morocco
  • National Laboratory for Studies and Pollution Monitoring-Ministry of Energy, Mines and Environment, Department of Environment, Rabat, Morocco
  • Resources Valorization, Environment and Sustainable Development Research Team (RVESD), Department of Mines, Mines School of Rabat, Ave Hadj Ahmed Cherkaoui – BP 753, Agdal, Rabat, 53000 Morocco
  • Laboratory of microbiology, Faculty of Medicine and Pharmacy Rabat, Mohammed V University, Rabat, Morocco
Bibliografia
  • 1. Li, X., Ke, Z., Dong, J. 2011. PCDDs and PCDFs in sewage sludge from two wastewater treatment plants in Beijing, China. Chemosphere, 82, 635–638.
  • 2. El Moussaoui, T., Wahbi, S., Mandi, L., Masi, S., Ouazzani, N. 2019. Reuse study of sustainable wastewater in agroforestry domain of Marrakesh city. Journal of the Saudi Society of Agricultural Sciences, 18(3), 288-293. https://doi.org/10.1016/j.jssas.2017.08.004
  • 3. Feigin, A., Ravina, I., Shalhevet, J. 2012. IrrigationWith Treated Sewage Effluent: Management for Environmental Protection. 17. Springer Science & Business Media.
  • 4. Council of the European Union, 1991. Council Directive 91/271/EEC of 21 May 1991 concerning urban wastewater treatment. Off. J. Eur. Union L, 135, 40–52.
  • 5. Council of the European Union, 2000, [Online]. Available: Council of the European Union, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000. Establishing a framework for the community action in the field of water policy. Off. J. Eur. Union L, 327, 1–73
  • 6. Fytili, D., Zabaniotou, A., 2008. Utilization of sludge in EU application of old and new methods—a review. Renew. Sustain. Energy Rev., 12, 116–140.
  • 7. Petersen, S.O., Petersen, J., Rubæk, G.H., 2003. Dynamics and plant uptake of nitrogen and phosphorus in soil amended with sewage sludge. Appl. Soil Ecol., 24, 187–195.
  • 8. Bozkurt, M.A., Akdeniz, H., Keskin, B.Y., Ibrahim, H. 2006. Possibilities of using sewage sludge as nitrogen fertilizer for maize. Acta Agric. Scand., Sec. B - Soil Plant Sci., 56, 143–149.
  • 9. Seleiman, M.F., Selim, S., Jaakkola, S., Mäkelä, P. 2017. Chemical composition and in vitro digestibility of whole-crop maize fertilized with synthetic fertilizer or digestate and harvested at two maturity stages in boreal growing conditions. Agric. Food.
  • 10. Garau, M., Dalmau, J., Felipo, M. 1991. Nitrogen mineralization in soil amendedwith sewage sludge and fly ash. Biol. Fertil. Soils, 12, 199–201. https://doi.org/10.1007/ bf00337202
  • 11. Rowell, D.M., Prescott, C.E., Preston, C.M. 2001. Decomposition and nitrogen mineralization from biosolids and other organic materials. J. Environ. Qual., 30, 1401–1410. https://doi.org/10.2134/jeq2001.3041401x.
  • 12. Brady, N.C., Weil, R. 2013. Nature and Properties of Soils. The Pearson New International edition. Pearson Higher Ed.
  • 13. Garau, M., Felipo, M., de Villa, M. 1986. Nitrogen mineralization of sewage sludges in soils. J. Environ. Qual., 15, 225–228. https://doi.org/10.2134/jeq1986.00472425001500030004x.
  • 14. M. Bouhafa, O., El Rhaouat, M., Lakhlifi, S., Belhamidi, A., El Midaoui, F., El Hannouni. 1999. The pollution load of wastewater and the performance of the sewage treatment plant of Skhirat city, 10, 3–6.
  • 15. Projet de Stratégie Nationale de Développement Durable 2030 RAPPORT FINAL.
  • 16. Lakhlifi, M., Belghyti, D., El Kharrim, K. 2017. Evaluation de la performance d’une station d’épuration de type lagunage à boues activées : Cas de la STEP Skhirat, Maroc Evaluation de la performance d’une station d’épuration de type lagunage à boues.
  • 17. Bremner, J.M. 1996. Nitrogen‐total. Methods soil Anal. Part 3 Chem. methods, 5, 1085–1121.
  • 18. Walkley, A., Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37(1), 29–38.
  • 19. Watanabe, F.S., Olsen, S.R. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J., 29(6), 677–678.
  • 20. Nelson, D.W., Sommers, L. 1983. Total carbon, organic carbon, and organic matter. Methods soil Anal. Part 2 Chem. Microbiol. Prop., 9, 539–579.
  • 21. Norme: NF T90-413 Octobre 1985 Essais des eaux - Recherche et dénombrement des coliformes et descoliformes thermotolérants - Méthode générale par ensemencement en milieu liquide(NPP).Norme:NM 037003 modifiée Méthode par tubes multiples pour le dénombreme.
  • 22. Norme (NF EN ISO 7899-1 Mars 1999 / T90-432): Qualité de l’eau - Recherche et dénombrement des entérocoques intestinaux dans les eaux de surface et résiduaires - Partie 1 : méthode miniaturisée (nombre le plus probable) par ensemencement en milieu liquid.
  • 23. Peterson, J.C. 1982. Effects of pH upon Nutrient Availability in a Commercial Soilless Root Medium Utilized for Floral Crop Production. 268. Ohio State University and Ohio Reseach and Develoment Center. Cir, 16–19.
  • 24. Kone, M., Service, E., Ouattara Y., Ouattara, P., Bonou L. 2016. Caractérisation des boues de vidange dépotées sur les lits de séchage de zagtouli (Ouagadougou). Characterization of the waste sludge deposited on the Zagtouli drying bed (Ouagadougou).
  • 25. Palc I., et al. 2019. The effect of stabilization on the utilization of municipal sewage sludge as a soil amendment, 94, 27–38. DOI: 10.1016/j.wasman.2019.05.032
  • 26. Christensen, T.H., Kjeldsen, P., Bjerg, P.L., Jensen, D.L., Christensen, J.B., Baun, A., Albrechtsen, H.-J., Heron, Et G. 2001. Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659-718.
  • 27. Zerrouqi, Z., Sbaa, M., Chafi, A., Elhafid, D. 2011. Investigation du lessivage des stocks de boues d ’épuration de Nador : Étude sur terrain et apport de l’ expérimentation Leaching investigation of sewage sludge stocks of Nador: Field study and experimen.
  • 28. Robinson, H.D., Lucas, J.L. 1985. Leachate attenuation in the unsaturated zone beneath landfills: instrumentation and monitoring of a site in southern England, Water Sciences Technology, 17, 477-492.
  • 29. Badza, T., Tesfamariam, E.H., Cogger, C.G. 2020. Science of the Total Environment Agricultural use suitability assessment and characterization of municipal liquid sludge: Based on South Africa survey. Science of the Total Environment, 721, 137658.
  • 30. Weil, R.R., Magdoff, F. 2004. Significance of soil organic matter to soil quality and health. In: Magdoff, F., Weil, R.R. (Eds.), Soil Organic Matter in Sustainable Agriculture. CRC Press, Boca Raton, FL, 1–43.
  • 31. Weil, R.R., Magdoff, F. 2004. Significance of soil organic matter to soil quality and health. In: Magdoff, F., Weil, R.R. (Eds.), Soil Organic Matter in Sustainable Agriculture. CRC Weil, R.R., Magdoff, F. 2004. Significance of soil organic matter to so.
  • 32. White, C.S., Loftin, S.R., Aguilar, R. 1997. Application of biosolid to degraded semiarid rangeland: Nine-year responses, Journal of Environmental Quality, 26, 1663-1671.
  • 33. Cogger, C.G., Bary, A.I., Sullivan, D.M., Myhre, E.A. 2004. Biosolids processing effects on first-and second-year available nitrogen. Soil Sci. Soc. Am. J., 68, 162–167. DOI: 10.2136/sssaj2004.1620.
  • 34. Laudelout, H. 1990. Les bases quantitatives de la production et du mouvement des nitrates. Procedeeng du symposium international sur Nitrates, agriculture, eau, Paris 7-8 Novembre 1990.
  • 35. Sierra, J.U. 2020. Agropédoclimatique, and D. Zone, “To cite this version : L’épandage agricole des boues de STEP dans le contexte antillais, 2020.
  • 36. Gasco, G., Vicente, M.A., Martinez, M.J., Sastre, I., Yebenes, L., Guerrero, A., Lobo, M.C. 2002. In man and soil at the third millennium, 1, 1097–1105.
  • 37. Juste et Solda. 1997. Effets d’application massive de boue de station d’épuration en monoculture de mais: action sur le rendement et la composition des plantes et sur quelques caractéristiques du sol, 147-155.
  • 38. Moss, L.H., Epstein, E., Logan, T. 2002. Evaluating risks and benefits of soil amendments used in agriculture. International Water Association and Water Environmental Research Foundation, Alexandria, VA.
  • 39. Council of the European Union. 1986. Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off. J. Eur. Union L., 181, 6–12.
  • 40. Yang, T., Huang, H., Lai, F. 2017. Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China. Trans. Nonferrous Met. Soc. China, 27, 2249–2259. https://doi.org/10.1016/S1003-6326(17)60251-6.
  • 41. EU Directive (86/278/EEC), 1986. Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Offic. J. Eur. Comm., 181, 0006–0012.
  • 42. Uggetti, E., Ferrer, I., Nielsen, S., Arias, C., Brix, H., García, J. 2012. Characteristics of biosolids from sludge treatment wetlands for agricultural reuse. Ecol. Eng., 40, 210–216. DOI: 10.1016/j.ecoleng.2011.12.030
  • 43. Seleiman, M.F., Santanen, A., Mäkelä, P.S.A. 2019. Resources, conservation & recycling sludge on cropland as fertilizer – advantages and risks. Resour. Conserv. Recycl., 155, 104647. DOI: 10.1016/j.resconrec.2019.1
  • 44. Fijalkowski, K., Rorat, A., Grobelak, A., Kacprzak, M.J. 2017. The presence of contaminations in sewage sludge e the current situation. J. Environ. Manag., 203, 1126e1136.
  • 45. Junior, A., De Oliveira, D., Machado, S., Brito, R., Jorge, F., Magalh, C. 2021. Agronomic potential of biosolids for a sustainable sanitation management in Brazil : Nutrient recycling, pathogens and micropollutants, 289. DOI: 10.1016/j.jclepro.202
  • 46. Seleiman, M.F., Santanen, A., Kleemola, J., Stoddard, F.L., Mäkelä, P.S.A. 2013b. Improved sustainability of feedstock production with sludge and interacting mychorriza. Chemosphere, 91, 1236–1242.
  • 47. Findlay C.R. 1972. The persistence of Salmonella dublin in slurry in tanks and on pasture. Vet. Rec., 91, 233-235, 36.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3731133-1579-40f8-b9de-e88b447bda97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.