ON THE SPECTRUM OF PERIODIC PERTURBATIONS OF CERTAIN UNBOUNDED JACOBI OPERATORS

Jaouad Sahbani

Communicated by P.A. Cojuhari

Abstract. It is known that a purely off-diagonal Jacobi operator with coefficients $a_n = n^{\alpha}$, $\alpha \in (0, 1]$, has a purely absolutely continuous spectrum filling the whole real axis. We show that a 2-periodic perturbation of these operators creates a non trivial gap in the spectrum.

Keywords: essential spectrum, spectral gap, periodic perturbation.

Mathematics Subject Classification: 47A10, 47B36, 39A70.

1. INTRODUCTION

In this note we consider Jacobi matrices of the form

$$\mathcal{J}(a_n, b_n) = \begin{pmatrix} b_1 & a_1 & 0 & \cdots \\ a_1 & b_2 & a_2 & \ddots \\ 0 & a_2 & b_3 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}, \text{ with } a_n > 0 \text{ and } b_n \in \mathbb{R}.$$
(1.1)

We will especially focus on the case where the matrix elements a_n and b_n are of the form

$$a_n = n^{\alpha} + \eta_n \quad \text{for all} \quad n \ge 1 \tag{1.2}$$

$$\eta_{n+2} = \eta_n \quad \text{and} \quad b_{n+2} = b_n \quad \text{for all} \quad n \ge 1, \tag{1.3}$$

where $\alpha \in (0, 1]$. Of course up to a translation one may assume without loss of generality that

$$b_1 = -b_2 = b$$
 for some $b \in \mathbb{R}$. (1.4)

807

© AGH University of Science and Technology Press, Krakow 2016

According to Carleman condition, see [1], $\mathcal{J}(a_n, b_n)$ defines an essentially self-adjoint operator on $l^2 = l^2(\mathbb{N})$. Moreover, it is well known that if $\eta_n = b_n = 0$, then $\mathcal{J}(a_n, b_n) = \mathcal{J}(n^{\alpha}, 0)$ has a purely absolutely continuous spectrum filling the whole real axis, see for example [6,13] and references therein. Our main result is the following.

Theorem 1.1. The operator $\mathcal{J} = \mathcal{J}(n^{\alpha} + \eta_n, b_n)$ is essentially self-adjoint and has no essential spectrum in the interval $(-\sqrt{b^2 + (\eta_2 - \eta_1)^2}, \sqrt{b^2 + (\eta_2 - \eta_1)^2}).$

In particular, if b = 0, then we get the following known result obtained for example in [2, 4, 8, 10].

Corollary 1.2. If b = 0, then $\sigma_{ess}(\mathcal{J}) = \mathbb{R} \setminus (-|\eta_2 - \eta_1|, |\eta_2 - \eta_1|)$.

Similarly, a purely diagonal periodic perturbation creates also a non trivial gap:

Corollary 1.3. If $\eta_1 = \eta_2 = 0$, then $\sigma_{ess}(\mathcal{J}) = \mathbb{R} \setminus (-|b|, |b|)$.

To show these results we transform $\mathcal{J}(a_n, b_n)$ in a Block Jacobi matrix $\mathcal{J}(A_n, B_n)$ acting in the Hilbert space $l^2(\mathbb{N}, \mathbb{C}^2)$, where A_n is a nilpotent matrix. In particular, squaring $\mathcal{J}(A_n, B_n)$ allows one to diagonalize it. This is related and in fact explains deeply the trick used in [2,4]. Notice that no asymptotic analysis of the generalized eigenfunctions is needed here.

2. PRELIMINARIES

Recall that the Jacobi matrix (1.1) induces an operator acting in l^2 by the difference expression

$$(\tau\psi)_n = a_{n-1}\psi_{n-1} + b_n\psi_n + a_n\psi_{n+1}$$
 for all $n \ge 1$, (2.1)

with $a_n > 0$, $b_n \in \mathbb{R}$ and $\psi_0 = 0$. Let \mathcal{J}_{min} be the restriction of τ to the subspace l_0^2 of sequences with only finitely many non zero coordinates. It is easy to verify that $\mathcal{J}_{min}^* = \mathcal{J}_{max}$, where \mathcal{J}_{max} is the restriction of τ to $D(\mathcal{J}_{max}) = \{\psi \in l^2 \mid \tau \psi \in l^2\}$. Let $\mathcal{J} := \overline{\mathcal{J}_{min}} = \mathcal{J}_{max}^*$ be the closure of \mathcal{J}_{min} . Clearly, \mathcal{J}_{min} is essentially self-adjoint on l_0^2 if and only if \mathcal{J}_{max} is symmetric. In such a case, $\mathcal{J} = \mathcal{J}_{max}$ will be said essentially self-adjoint on l_0^2 and denoted by $\mathcal{J}(a_n, b_n)$ when the coefficients dependence should be stressed. If \mathcal{J} is not essentially self-adjoint on l_0^2 , then \mathcal{J} has uncountably many self-adjoint extensions and each one has a purely discrete spectrum. For a deeper discussion of the self-adjointness question of Jacobi matrices we refer the reader to [1]. The apping theorem follows from different known results can [1, 2, 5, 7, 11, 13]

The coming theorem follows from different known results, see [1,3,5-7,11,13].

Theorem 2.1. Let $\alpha > 0$ and assume that $a_n = n^{\alpha}$ and $b_n = \lambda(a_n + a_{n-1})$. Then the following assertions hold.

- (a) If $|\lambda| > 1$, then \mathcal{J} is essentially self-adjoint and has no essential spectrum for all $\alpha > 0$.
- (b) If $|\lambda| < 1$, then α comes in the game as follows:
 - (b1) if $\alpha > 1$, then \mathcal{J} is not essentially self-adjoint on l_0^2 ;
 - (b2) if $0 < \alpha \leq 1$, then \mathcal{J} is essentially self-adjoint on l_0^2 and has a purely absolutely continuous spectrum filling the whole real axis \mathbb{R} .

- (c) If $\lambda = \pm 1$, then \mathcal{J} is essentially self-adjoint on l_0^2 regardless of α , but:
 - (c1) if $\alpha > 2$, then the essential spectrum of \mathcal{J} is empty;
 - (c2) if $0 < \alpha < 2$, then the spectrum of \mathcal{J} is absolutely continuous and fills the semi-axis $[0, \pm \infty)$ (i.e. $(-\infty, 0]$ if $\lambda = -1$ and $[0, +\infty)$ if $\lambda = 1$);
 - (c3) if $\alpha = 2$, then the spectrum of \mathcal{J} is purely absolutely continuous and fills the semi-axis $[1/4, \pm \infty)$.

Remark 2.2.

(i) The point (a) is a particular case of Theorem 4.1 of [7] ensuring that $\mathcal{J}(a_n, b_n)$ is essentially self-adjoint on l_0^2 and has no essential spectrum if

$$\lim_{n \to \infty} a_n = +\infty \quad \text{and} \quad \liminf_{n \to \infty} \frac{b_n^2}{a_n^2 + a_{n-1}^2} > 2.$$
(2.2)

- (ii) The assertion (b1) extends Theorem 1.5 of page 507 of [1] which only covers the case where $\lambda = 0$, for more details see [13].
- (iii) The assertion (b2) can be deduced from [6,7], see also [13].
- (iv) The point (c1) follows from Theorem 8 of [5]. Here we give a quite elementary proof of this assertion based on an explicit computation of the resolvent that we will use elsewhere in this note. More specifically, *assume that*

$$\lim_{n \to \infty} n^2 / a_n = 0$$

and

$$\beta_n^- = b_n + (a_n + a_{n-1}) \text{ (respectively, } \beta_n^+ = b_n - (a_n + a_{n-1}) \text{)}$$
 is bounded

then $\mathcal{J}(a_n, b_n)$ is essentially self-adjoint on l_0^2 and has no essential spectrum. Indeed, by using the unitary operator given by $(U\psi)_n = (-1)^n \psi_n$, it is enough to study the minus case. Moreover, by [1, Theorem 1.4, p. 505] and [1, the Corollary, p. 506], the operator \mathcal{J} is self-adjoint and semi-bounded. Recall that, according to Hardy's inequality, the Carleman operator defined by

$$(Cf)_n = \frac{1}{n} \sum_{j=1}^{j=n} f_j$$
 (2.3)

is bounded in \mathcal{H} . Thus the operator defined by

$$(Tf)_n = \frac{1}{\sqrt{a_n}} \sum_{j=1}^{j=n} f_j$$
 (2.4)

is compact in \mathcal{H} since $n/\sqrt{a_n}$ tends to zero at infinity. Now it is easy to verify that $\mathcal{J} = \mathcal{J}(a_n, b_n)$ is invertible and $\mathcal{J}^{-1} = -T^*T$ which is clearly compact. Hence $\sigma_{ess}(\mathcal{J}) = \emptyset$.

(v) Notice that one may deduce also that if $\{n^2/a_n\}_{n\geq 1}$ is bounded, then $\mathcal{J}^{\pm} = \mathcal{J}(a_n, \pm (a_n + a_{n-1}))$ is invertible so that $0 \notin \sigma(\mathcal{J}^{\pm})$.

The following lemma comes from [13].

Lemma 2.3. The operator $\mathcal{J}(\eta_n, \beta_n)$ is $\mathcal{J}(a_n, b_n)$ -compact (i.e. relatively compact with respect to $\mathcal{J}(a_n, b_n)$) provided that

$$\lim_{n \to \infty} \left| \frac{\eta_n}{a_n} \right| + \left| \eta_n \frac{a_{n-1}}{a_n} - \eta_{n-1} \right| + \left| \eta_n \frac{b_n}{a_n} - \beta_n \right| = 0.$$

$$(2.5)$$

Remark 2.4. If $a_n = n^{\alpha}$ with $0 < \alpha \le 1$ and $b_n = 0$, then conditions of Lemma 2.3 are equivalent to

$$\lim_{n \to \infty} \left(\left| \frac{\eta_n}{n^{\alpha}} \right| + \left| \partial \eta_n \right| + \left| \beta_n \right| \right) = 0.$$
(2.6)

In contrast, according to Theorem 1.1, if η_n or β_n is 2-periodic, then $\mathcal{J}(a_n + \eta_n, b_n + \beta_n)$ has a spectral gap in its essential spectrum while the spectrum of $\mathcal{J}(a_n, b_n)$ fills the whole real axis. This illustrates the sharpness of our Lemma 2.3.

Corollary 2.5. For $\alpha \in (0,1)$, $\mathcal{J}(n^{2\alpha-1}, \pm 2n^{2\alpha-1})$ is $\mathcal{J}(n^{2\alpha}, \pm (n^{2\alpha} + (n-1)^{2\alpha}))$ -compact operator.

Proof. Here $\eta_n = n^{2\alpha-1}$ and $\beta_n = n^{2\alpha-1} + (n-1)^{2\alpha-1}$. Then it is clear that $\frac{\eta_n}{n^{2\alpha}} = n^{2\alpha-2} \to 0$ at infinity. Similarly,

$$\eta_n \frac{(n-1)^{\alpha}}{n^{\alpha}} - \eta_{n-1} = n^{\alpha-1}(n-1)^{\alpha} - (n-1)^{2\alpha-1} = O(n^{2\alpha-2})$$

which tends to zero at infinity. Finally,

$$\eta_n \frac{n^{2\alpha} + (n-1)^{2\alpha}}{n^{2\alpha}} - \beta_n = O(n^{2\alpha-2}).$$

The proof is finished. The minus case is similar.

Corollary 2.6. Assume that $\lim_{n\to\infty} a_n = +\infty$, $\lim_{n\to\infty} a_{n+1}/a_n = 1$ and $\lim_{n\to\infty} b_n/a_n = 2\lambda$. Then $\mathcal{J}(1, 2\lambda)$ is $\mathcal{J}(a_n, b_n)$ -compact.

The following Proposition does not follow from Lemma 2.3.

Proposition 2.7. The operator $\mathcal{J}(n, \pm(2n-1))$ is $\mathcal{J}(n^2, \pm(n^2+(n-1)^2))$ -compact. Proof. It is enough to treat the minus case, the plus case is similar. Put $\mathcal{J} = \mathcal{J}(n^2, -(n^2+(n-1)^2))$. We know that $0 \notin \sigma(J)$ and

$$(\mathcal{J}^{-1}f)_n = -\sum_{k=n}^{\infty} \frac{1}{k^2} \sum_{j=1}^k f_j \text{ for all } f \in \mathcal{H}.$$

Let us set $V = \mathcal{J}(n, -(2n-1))$ and $f \in l^2(\mathbb{N})$. One has

$$-(V\mathcal{J}^{-1}f)_n = n\sum_{k=n+1}^{\infty} \frac{1}{k^2} \sum_{j=1}^k f_j - (2n-1) \sum_{k=n}^{\infty} \frac{1}{k^2} \sum_{j=1}^k f_j + (n-1) \sum_{k=n-1}^{\infty} \frac{1}{k^2} \sum_{j=1}^k f_j$$
$$= \frac{1}{(n-1)n} \sum_{j=1}^n f_j - \frac{1}{n-1} f_n$$
$$= (DCf)_n - (Df)_n,$$

$$\Box$$

where C in the Carleman operator defined by (2.3) and D the diagonal operator defined by $(Df)_1 = 0$ and $(Df)_n = \frac{1}{n-1}f_n$ for all $n \ge 2$. Since C is a bounded operator in $l^2(\mathbb{N})$ and D is a compact one, we immediately deduce that $V\mathcal{J}^{-1} = D(C-I)$ is compact.

3. BLOCK JACOBI MATRICES

Let $\mathcal{H} = l^2(\mathbb{N}, \mathbb{C}^2)$ be the Hilbert space of square summable vector-valued sequences $(\psi_n)_{n\geq 1}$ endowed with the scalar product

$$\langle \phi, \psi \rangle = \sum_{n \in \mathbb{Z}} \langle \phi_n, \psi_n \rangle_{\mathbb{C}^2},$$

where $\langle \cdot, \cdot \rangle_{\mathbb{C}^2}$ is the usual scalar product of \mathbb{C}^2 . Let A_n and B_n be two sequences of 2×2 matrices such that $B_n = B_n^*$ for all $n \in \mathbb{Z}$. Here we denote by T^* the adjoint matrix of a given matrix T. Let us consider the block Jacobi operator $\mathcal{J} = \mathcal{J}(A_n, B_n)$ acting in \mathcal{H} by

$$(\mathcal{J}\psi)_n = A_{n-1}^* \psi_{n-1} + B_n \psi_n + A_n \psi_{n+1} \quad \text{for all} \quad n \ge 1$$
 (3.1)

with $\psi_0 = 0$. In [14] we studied different classes of bounded self-adjoint block Jacobi operators given by (3.1) with applications to some concrete models. In this section we will focus on special unbounded cases. More specifically, we assume that

$$A_n = \begin{pmatrix} 0 & 0\\ \alpha_n & 0 \end{pmatrix}, \quad B_n = \begin{pmatrix} b & \beta_n\\ \beta_n & -b \end{pmatrix}, \quad n \ge 1,$$
(3.2)

where $b \in \mathbb{R}, \alpha_n > 0, \beta_n > 0$ for all $n \ge 1$, and

$$\lim_{n \to +\infty} \alpha_n = \lim_{n \to +\infty} \beta_n = +\infty \quad \text{and} \quad \sum_{n \ge 1} \frac{1}{\alpha_n} = +\infty.$$
(3.3)

According to Carleman condition, see [1], $\mathcal{J} = \mathcal{J}(A_n, B_n)$ is an essentially self-adjoint in \mathcal{H} .

Example 3.1. Let $\mathcal{J}(a_n, b_n)$ be the Jacobi operator defined by (1.1) and $\mathcal{U}: l^2(\mathbb{N}) \to l^2(\mathbb{N}, \mathbb{C}^2)$ defined by $(\mathcal{U}\psi)_n = (\psi_{2n-1}, \psi_{2n})$. It is clear that \mathcal{U} is a unitary operator and

$$\begin{aligned} \mathcal{U}\mathcal{J}(a_n,b_n)\mathcal{U}^{-1} &= \mathcal{J}(A_n,B_n) \\ \text{with} \ A_n &= \begin{pmatrix} 0 & 0 \\ a_{2n} & 0 \end{pmatrix}, \ B_n &= \begin{pmatrix} b_{2n-1} & a_{2n-1} \\ a_{2n-1} & b_{2n} \end{pmatrix}, \quad n \geq 1. \end{aligned}$$

This explains partially our motivation to study block Jacobi matrices given by (3.1) and (3.2). For example, if a_n and b_n are given by (1.2) and (1.3), then it is enough to study the case where

$$\alpha_n = (2n)^{\alpha} + \eta_2$$
 and $\beta_n = (2n-1)^{\alpha} + \eta_1$ and $b \in \mathbb{R}$.

Proposition 3.2. Let

$$A'_{n} = \begin{pmatrix} \alpha_{n}\beta_{n} & 0\\ 0 & \alpha_{n}\beta_{n+1} \end{pmatrix}, \quad B'_{n} = \begin{pmatrix} b^{2} + \alpha_{n-1}^{2} + \beta_{n}^{2} & 0\\ 0 & b^{2} + \alpha_{n}^{2} + \beta_{n}^{2} \end{pmatrix}, \quad n \ge 1$$

with $\alpha_0 = 0$. The operator $\mathcal{J} = \mathcal{J}(A_n, B_n)$ is essentially self-adjoint and $\mathcal{J}^2 = \mathcal{J}(A'_n, B'_n)$.

Proof. By direct computations based on the special form of the matrices A_n . **Corollary 3.3.** In the representation $l^2(\mathbb{N}, \mathbb{C}^2) = l^2(\mathbb{N}) \oplus l^2(\mathbb{N})$ one has

$$\mathcal{J}^2 = \mathcal{J}_1 \oplus \mathcal{J}_2,$$

where (with $\alpha_0 = 0$)

$$\mathcal{J}_1 = \mathcal{J}(\alpha_n \beta_n, b^2 + \alpha_{n-1}^2 + \beta_n^2) \quad and \quad \mathcal{J}_2 = \mathcal{J}(\alpha_n \beta_{n+1}, b^2 + \alpha_n^2 + \beta_n^2).$$

Example 3.4. Assume that $\alpha_n = n^{\alpha}$ and $\beta_n = (n - \frac{1}{2})^{\alpha}$ for some $\alpha \in (0, 1)$. Then

$$\begin{cases} \alpha_n \beta_n = n^{2\alpha} - \frac{\alpha}{2} n^{2\alpha-1} + \varepsilon_n, \\ \alpha_{n-1}^2 + \beta_n^2 = n^{2\alpha} + (n-1)^{2\alpha} - \alpha n^{2\alpha-1} + \kappa_n, \end{cases}$$

where $\varepsilon_n, \kappa_n \to 0$ at infinity. Hence for some compact operator K one has

$$\mathcal{J}_1 = \mathcal{J}(\alpha_n \beta_n, \alpha_{n-1}^2 + \beta_n^2) = \mathcal{J}(n^{2\alpha}, n^{2\alpha} + (n-1)^{2\alpha}) - \frac{\alpha}{2}\mathcal{J}(n^{2\alpha-1}, 2n^{2\alpha-1}) + K.$$

Since $\mathcal{J}(n^{2\alpha-1}, 2n^{2\alpha-1})$ is $\mathcal{J}(n^{2\alpha}, n^{2\alpha} + (n-1)^{2\alpha})$ -compact we deduce that

$$\sigma_{ess}(\mathcal{J}_1) = \sigma_{ess}(\mathcal{J}(n^{2\alpha}, n^{2\alpha} + (n-1)^{2\alpha})).$$

Similarly, we prove that for some compact operator K' one has

$$\mathcal{J}_2 = \mathcal{J}(n^{2\alpha}, n^{2\alpha} + (n-1)^{2\alpha}) + \frac{\alpha}{2}\mathcal{J}(n^{2\alpha-1}, 2n^{2\alpha-1}) + K'$$

so that

$$\sigma_{ess}(\mathcal{J}_2) = \sigma_{ess}(\mathcal{J}(n^{2\alpha}, n^{2\alpha} + (n-1)^{2\alpha})).$$

According to Example 3.1, $\mathcal{J}(A_n, B_n)$ is unitarily equivalent to $2^{-\alpha} \mathcal{J}(n^{\alpha}, 0)$, so that $\sigma_{ess}(\mathcal{J}(A_n, B_n)) = \mathbb{R}$. Hence,

$$\sigma_{ess}(\mathcal{J}(n^{2\alpha}, n^{2\alpha} + (n-1)^{2\alpha})) = [0, +\infty).$$

This represents a simple proof of the point (c2) of Theorem 2.1 which is related to the trick used by Dombrowski and Pedersen in [3, 4, 11].

Example 3.5. Assume that $\alpha_n = n$ and $\beta_n = n - \frac{1}{2}$. Then

$$\begin{cases} \alpha_n \beta_n = n^2 - \frac{1}{2}n, \\ \alpha_{n-1}^2 + \beta_n^2 = n^2 + (n-1)^2 - n + \frac{1}{4} \end{cases}$$

813

Hence

$$\mathcal{J}_1 = \mathcal{J}(n^2, n^2 + (n-1)^2) - \frac{1}{2}\mathcal{J}(n, 2n-1) - \frac{1}{4}.$$

Since $\mathcal{J}(n, 2n-1)$ is $\mathcal{J}(n^2, n^2 + (n-1)^2)$ -compact, we deduce that

$$\sigma_{ess}(\mathcal{J}_1) = \sigma_{ess}(\mathcal{J}(n^2, n^2 + (n-1)^2) - \frac{1}{4})$$

Similarly, we prove that

$$\mathcal{J}_2 = \mathcal{J}(n^2, n^2 + (n-1)^2) + \frac{1}{2}\mathcal{J}(n, 2n-1) - \frac{1}{4}$$

so that

$$\sigma_{ess}(\mathcal{J}_2) = \sigma_{ess}(\mathcal{J}(n^2, n^2 + (n-1)^2)) - \frac{1}{4}$$

As $\sigma_{ess}(\mathcal{J}(A_n, B_n) = \mathbb{R})$, we deduce that

$$\sigma_{ess}(\mathcal{J}(n^2, n^2 + (n-1)^2)) = [1/4, +\infty).$$

This represents a simple proof of the point (c2) of Theorem 2.1 which is related also to Dombrowski-Pedersen method's, see [3, 4, 11].

Remark 3.6. Notice that in [13] we studied operators of the form $\mathcal{J}(n^{\alpha}, n^{\alpha} + (n-1)^{\alpha}))$ with $\alpha > 0$. In particular, we proved Mourre estimates for these operators with $\alpha \in (0, 1]$. The case where $\alpha \in (1, 2)$ is not covered by [13]. Indeed, in this case we were not able to complete our proof for a lack of information on the asymptotic behavior of the Green function of \mathcal{J} that are now available in [9]. In other words, combining [13] and [9] we get a Mourre estimate for $\mathcal{J}(n^{\alpha}, n^{\alpha} + (n-1)^{\alpha}))$ with $\alpha \in (0, 2)$. For $\alpha = 2$, no Mourre estimate is known to our knowledge.

Theorem 3.7. Assume that $\alpha_n = n^{\alpha} + \eta_2, \beta_n = (n - \frac{1}{2})^{\alpha} + \eta_1$ with $\alpha \in (0, 1]$. Then

$$\sigma_{ess}(\mathcal{J}^2(A_n, B_n) = [b^2 + (\eta_2 - \eta_1)^2, +\infty).$$

Proof. (i) Let us start with case $\alpha = 1$ so that $\alpha_n = n + \eta_2$ and $\beta_n = n - \frac{1}{2} + \eta_1$. Then

$$\begin{cases} \alpha_n \beta_n = n^2 + (\eta_1 + \eta_2 - \frac{1}{2})n + \eta_2(\eta_1 - \frac{1}{2}), \\ \alpha_{n-1}^2 + \beta_n^2 = n^2 + (n-1)^2 + (\eta_1 + \eta_2 - \frac{1}{2})(2n-1) + 2\eta_2(\eta_1 - \frac{1}{2}) + (\eta_1 - \eta_2)^2 - \frac{1}{4} \end{cases}$$

with $\alpha_0 = 0$. Hence $\mathcal{J}_1 = \mathcal{J}'_1 - \eta_2^2 \langle \cdot, \delta_1 \rangle \delta_1$, where $\delta_1 = (1, 0, \cdots) \in l^2$ and

$$\begin{aligned} \mathcal{J}_1' &= \mathcal{J}(n^2, n^2 + (n-1)^2) + \left(\eta_1 + \eta_2 - \frac{1}{2}\right) \mathcal{J}(n, 2n-1) \\ &+ \eta_2 \left(\eta_1 - \frac{1}{2}\right) \mathcal{J}(1, 2) - \frac{1}{4} + b^2 + (\eta_2 - \eta_1)^2. \end{aligned}$$

Since $\mathcal{J}(1,2)$ and $\mathcal{J}(n,2n-1)$ are $\mathcal{J}(n^2,n^2+(n-1)^2)$ -compact and

$$\sigma_{ess}(\mathcal{J}(n^2, n^2 + (n-1)^2)) = [1/4, +\infty)$$

we deduce that

$$\sigma_{ess}(\mathcal{J}_1) = [b^2 + (\eta_2 - \eta_1)^2, +\infty).$$

Similar calculation shows that

$$\mathcal{J}_2 = \mathcal{J}_1 + \mathcal{J}(n, 2n-1) + \eta_2 \mathcal{J}(1, 2) + \eta_2^2 \langle \cdot, \delta_1 \rangle \delta_1.$$

It follows that

$$\sigma_{ess}(\mathcal{J}_2) = [b^2 + (\eta_2 - \eta_1)^2, +\infty),$$

which finishes the proof of the desired assertion in this case.

(ii) Assume now that $\alpha \in (0, 1)$. We have then

$$\begin{cases} \alpha_n \beta_n = n^{2\alpha} - \frac{\alpha}{2} n^{2\alpha - 1} + (\eta_1 + \eta_2) n^{\alpha} + \eta_1 \eta_2 + \varepsilon_n, \\ \alpha_{n-1}^2 + \beta_n^2 = n^{2\alpha} + (n-1)^{2\alpha} - \alpha n^{2\alpha - 1} + 2(\eta_1 + \eta_2) n^{\alpha} + \kappa_n, \end{cases}$$

where $\varepsilon_n, \kappa_n \to 0$ at infinity. Hence for some compact operator K one has

$$\mathcal{J}_1 = \mathcal{J}(n^{2\alpha}, n^{2\alpha} + (n-1)^{2\alpha}) - \frac{\alpha}{2} \mathcal{J}(n^{2\alpha-1}, 2n^{2\alpha-1}) + (\eta_1 + \eta_2) \mathcal{J}(n^{\alpha}, 2n^{\alpha}) + b^2 + (\eta_2 - \eta_1)^2 + K.$$

But $\mathcal{J}(n^{\alpha}, 2n^{\alpha})$ and $\mathcal{J}(n^{2\alpha-1}, 2n^{2\alpha-1})$ are $\mathcal{J}(n^{2\alpha}, n^{2\alpha} + (n-1)^{2\alpha})$ -compact we deduce that

$$\sigma_{ess}(\mathcal{J}_1) = [b^2 + (\eta_2 - \eta_1)^2, +\infty).$$

Similarly, we prove that $\sigma_{ess}(\mathcal{J}_2) = [b^2 + (\eta_2 - \eta_1)^2, +\infty)$. The proof is finished. \Box

4. PROOF OF THEOREM 1.1

Since a_n and b_n are given by (1.2) and (1.3), then according to Example 3.1, $\mathcal{J}(a_n, b_n)$ is unitarily equivalent to $2^{\alpha} \mathcal{J}(A_n, B_n)$, where the coefficients of A_n and B_n are given by

$$\alpha_n = n^{\alpha} + 2^{-\alpha} \eta_2$$
, $\beta_n = \left(n - \frac{1}{2}\right)^{\alpha} + 2^{-\alpha} \eta_1$ and $2^{-\alpha} b \in \mathbb{R}$.

The proof can be completed by a direct application of Theorem 3.7.

5. PROOF OF COROLLARY 1.2

Since b = 0, then according to Theorem 1.1 one has

$$\sigma_{ess}(\mathcal{J}^2(a_n,0)) = \left[(\eta_2 - \eta_1)^2, +\infty \right).$$

But direct computation shows that $U\mathcal{J}(a_n, 0)U^{-1} = -\mathcal{J}(a_n, 0)$, where U is the unitary operator on l^2 defined by $(U\psi)_n = (-1)^n \psi_n$. Hence the spectrum of $\mathcal{J}(a_n, 0)$ is symmetric with respect to the origin and the desired equality follows.

6. PROOF OF COROLLARY 1.3

Since $\eta_1 = \eta_2 = 0$, then according to Theorem 1.1, one has

$$\sigma_{ess}(\mathcal{J}^2(a_n, b_n)) = \left[b^2, +\infty\right).$$

In this case the spectrum of $\mathcal{J}(a_n, b_n)$ is, in general, not symmetric with respect to the origin, see next Proposition. Nevertheless, we will show that the essential spectrum of $\mathcal{J}(a_n, b_n)$ is symmetric with respect to the origin which is enough for us. Indeed, direct computation shows that the $U\mathcal{J}(a_n, b_n)U^{-1} = -\mathcal{J}(a_n, -b_n)$. In particular,

$$\sigma_{ess}(\mathcal{J}(a_n, -b_n)) = -\sigma_{ess}(\mathcal{J}(a_n, b_n))$$

But

$$\mathcal{J}(a_n, -b_n) = \begin{pmatrix} -b & a_1 & 0 & \ddots \\ a_1 & b & a_2 & \ddots \\ 0 & a_2 & -b & \ddots \\ \ddots & \ddots & \ddots & \ddots \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & \ddots \\ 0 & b & a_2 & \ddots \\ 0 & a_2 & -b & \ddots \\ \ddots & \ddots & \ddots & \ddots \end{pmatrix} + \text{finite rank operator.}$$

It follows that

$$\sigma_{ess}(\mathcal{J}(a_n, -b_n)) = \sigma_{ess}(\mathcal{J}(a_{n+1}, b_n)).$$

If $a_n = n^{\alpha}, \alpha \in (0, 1)$, then $a_{n+1} - a_n \to 0$ at infinity. In particular, the difference $\mathcal{J}(a_{n+1}, b_n) - \mathcal{J}(a_n, b_n)$ is a compact operator. In particular, $\sigma_{ess}(\mathcal{J}(a_n, -b_n)) = \sigma_{ess}(\mathcal{J}(a_n, b_n))$. Hence

$$\sigma_{ess}(\mathcal{J}(a_n, b_n)) = -\sigma_{ess}(\mathcal{J}(a_n, b_n)),$$

which is the desired property.

If $a_n = n$, then $\mathcal{J}(a_{n+1}, b_n) = \mathcal{J}(a_n, b_n) + \mathcal{J}(1, 0)$. But, according to Lemma 2.3, $\mathcal{J}(1, 0)$ is $\mathcal{J}(a_n, b_n)$ -compact. In particular,

$$\sigma_{ess}(\mathcal{J}(a_n, -b_n)) = \sigma_{ess}(\mathcal{J}(a_{n+1}, b_n)) = \sigma_{ess}(\mathcal{J}(a_n, b_n)).$$

The proof of of Corollary 1.2 is complete.

Proposition 6.1. Assume that $\alpha_n = n + \eta_2$ and $\beta_n = n - \frac{1}{2} + \eta_1$.

- (i) If η₁ − ¹/₂ ≥ 0 and η₂ ≥ 0, then J(A_n, B_n) has at most two eigenvalues in the spectral gap G = (−√b² + (η₁ − η₂)², √b² + (η₁ − η₂)²) and a purely absolutely continuous spectrum filling ℝ \ G.
- (ii) b is an eigenvalue of $\mathcal{J}(A_n, B_n)$ if and only if $\eta_2 > \eta_1$. In this case, -b is an eigenvalue of $\mathcal{J}(A_n, B_n)$ if and only if b = 0.

Proof. (i) Recall that in this case $\mathcal{J}_1 = \mathcal{J}'_1 - \eta_2^2 \langle \cdot, \delta_1 \rangle \delta_1$, where

$$\begin{aligned} \mathcal{J}_1' &= \mathcal{J}(n^2, n^2 + (n-1)^2) + \left(\eta_1 + \eta_2 - \frac{1}{2}\right) \mathcal{J}(n, 2n-1) \\ &+ \eta_2 \left(\eta_1 - \frac{1}{2}\right) \mathcal{J}(1, 2) - \frac{1}{4} + b^2 + (\eta_2 - \eta_1)^2. \end{aligned}$$

Consider the self-adjoint operator defined on l^2 by

$$(iA\psi)_n = n\psi_{n+1} - (n-1)\psi_{n-1}.$$

According to [13], A is $\mathcal{J}(n^2, n^2 + (n-1)^2)$ -bounded and the commutator

$$[\mathcal{J}_1', i\mathbf{A}] = \mathcal{J}^2(n, 2n-1) + 2\left(\eta_1 + \eta_2 - \frac{1}{2}\right)\mathcal{J}(n, 2n-1) + \eta_2\left(\eta_1 - \frac{1}{2}\right)\left(4 - \mathcal{J}^2(1, 0)\right).$$

But $\mathcal{J}(n, 2n - 1)$ and $4 - \mathcal{J}^2(1, 0)$ are positive operators. Hence, according to the Putnam-Kato theorem, \mathcal{J}'_1 has a purely absolutely continuous spectrum if $\eta_1 - \frac{1}{2} \ge 0$ and $\eta_2 \ge 0$. In particular, \mathcal{J}_1 has a purely absolutely continuous spectrum on $[b^2 + (\eta_1 - \eta_2)^2, +\infty)$ plus at most a simple eigenvalue in the spectral gap $(-\infty, b^2 + (\eta_1 - \eta_2)^2)$.

Similarly, we show that \mathcal{J}_2 has a purely absolutely continuous spectrum if $\eta_1 + \frac{1}{2} \ge 0$ and $\eta_2 \ge 0$. Finally, if $\eta_1 - \frac{1}{2} \ge 0$ and $\eta_2 \ge 0$, then $\mathcal{J}(A_n, B_n)$ is purely absolutely continuous on $\mathbb{R} \setminus (-\sqrt{b^2 + (\eta_1 - \eta_2)^2}, \sqrt{b^2 + (\eta_1 - \eta_2)^2})$ and has at most two eigenvalues in the spectral gap $(-\sqrt{b^2 + (\eta_1 - \eta_2)^2}, \sqrt{b^2 + (\eta_1 - \eta_2)^2})$. In contrast, *b* is an eigenvalue of $\mathcal{J}(A_n, B_n)$ if and only if there exists an non zero

In contrast, b is an eigenvalue of $\mathcal{J}(A_n, B_n)$ if and only if there exists an non zero ψ defined by $\psi_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ such that, for all $n \ge 1$

$$\begin{cases} \beta_n y_n & +\alpha_{n-1} y_{n-1} = 0, \\ \beta_n x_n - 2by_n + \alpha_n x_{n+1} & = 0 \end{cases}$$

with $\alpha_0 = 0$. By induction we show that $y_n = 0$ and $x_{n+1} = -(\beta_n/\alpha_n)x_n$, for all $n \ge 1$. Hence, b is an eigenvalue of $\mathcal{J}(A_n, B_n)$ if and only if the sequence defined by $x_1 = 1$ and

$$x_{n+1} = (-1)^n \prod_{i=1}^n \frac{\beta_i}{\alpha_i}, \quad n \ge 1,$$
 (6.1)

is square summable. But according to Gauss's test this is equivalent to $\eta_2 > \eta_1$, since

$$\frac{x_n^2}{x_{n+1}^2} = \frac{\alpha_n^2}{\beta_n^2} = 1 + \frac{2(\eta_2 - \eta_1 + \frac{1}{2})}{n} + \frac{g_n}{n^2}, \quad \text{as } n \to \infty,$$

for some bounded sequence g_n . Notice that in this case the associated eigenvectors are proportional to the vector ψ given by $\psi_n = (x_n, 0)$, for all $n \ge 1$.

Similarly, one may prove that if -b is an eigenvalue of $\mathcal{J}(A_n, B_n)$, then $\eta_2 > \eta_1$ and associated eigenvectors are of the form $\varphi_n = (cx_n, y_n)$, where x_n is given by (6.1). Hence if $b \neq 0$, then b and -b are two distinct eigenvalues of \mathcal{J} so that $\langle \psi, \varphi \rangle = 0$ which implies that c = 0 so that $y_n = 0$ and -b is not an eigenvalue of \mathcal{J} . \Box **Remark 6.2.** Notice that the same argument shows that if $\alpha \in (0, 1)$, then b is an eigenvalue of $\mathcal{J}(A_n, B_n)$ if and only if the sequence x_n defined by (6.1) is square summable. Here again one may show that this is equivalent to $\eta_2 > \eta_1$.

Proposition 6.3. Assume that $\alpha_n = \beta_n$, the sequence $\alpha_n(2\alpha_n - \alpha_{n+1} - \alpha_{n-1})$ is bounded below and $\lim_{n\to\infty} n/\alpha_n = 0$. Then $\sigma_{ess}(\mathcal{J}_1) = \sigma_{ess}(\mathcal{J}_2) = \emptyset$. In particular, $\mathcal{J}(a_n, 0)$ has no essential spectrum if $a_{2n-1} = a_{2n} = \alpha_n$.

Proof. Recall that $\mathcal{J}_1 = \mathcal{J}(\alpha_n^2, \alpha_n^2 + \alpha_{n-1}^2)$ and $\mathcal{J}_2 = \mathcal{J}(\alpha_n \alpha_{n+1}, 2\alpha_n^2)$. Moreover, the sequence

$$2\alpha_n^2 - \alpha_n \alpha_{n+1} - \alpha_n \alpha_{n-1} = \alpha_n (2\alpha_n - \alpha_{n+1} - \alpha_{n-1})$$

is bounded from below. A direct application of Theorem 8 of [5] to $\mathcal{J}_1, \mathcal{J}_2$ finishes the proof.

Example 6.4. The last proposition applies to $\alpha_n = n \ln n$. In particular, $\mathcal{J}(n \ln n, 0)$ has a purely absolutely continuous spectrum filling the whole real axis, while $\mathcal{J}(a_n, 0)$ has no essential spectrum if $a_{2n-1} = a_{2n} = n \ln n$.

Proposition 6.5. Assume that $\beta_n = c\alpha_n$ for some positive constant $c \neq 1$ and $\alpha_n/\alpha_{n+1} \to 1$ a $n \to \infty$. Then $\mathcal{J}(A_n, B_n)$ has no essential spectrum. In particular, the operator $\mathcal{J}(a_n, 0)$ has no essential spectrum if $a_{2n-1} = ca_{2n} = cn^{\alpha}$ with $\alpha \in (0, 1)$.

Proof. Since $c \neq 1$, one has

$$\lim_{n \to \infty} \frac{(\alpha_{n-1}^2 + \beta_n^2)^2}{\alpha_n^2 \beta_n^2 + \alpha_{n-1}^2 \beta_{n-1}^2} = \frac{(c^2 + 1)^2}{2c^2} > 2.$$

Hence, according to (i) of the remark following Theorem 2.1, \mathcal{J}_1 has purely discrete spectrum. Similar argument works for \mathcal{J}_2 . The proof is complete.

REFERENCES

- Yu.M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, vol. 17, Translation of Mathematical Monographs, Amer. Math. Soc., Providence, RI, 1968.
- [2] J. Dombrowski, J. Janas, M. Moszyński, S. Pedersen, Spectral gaps resulting from periodic perturbations of a class of Jacobi operators, Constr. Approx. 20 (2004) 4, 585–601.
- [3] J. Dombrowski, S. Pedersen, Absolute continuity for Jacobi matrices with constant row sums, J. Math. Anal. Appl. 267 (2002), 695–713.
- [4] J. Dombrowski, S. Pedersen, Spectral transition parameters for a class of Jacobi matrices, Studia Math. 152 (2002), 217–229.
- [5] D.B. Hinton, R.T. Lewis, Spectral analysis of second-order difference equations, J. Math. Anal. Appl. 63 (1978), 421–438.
- [6] J. Janas, S.N. Naboko, Jacobi matrices with power-like weight grouping in blocks approach, J. Func. Anal. 166 (1999), 218–243.

- [7] J. Janas, S.N. Naboko, Multi-threshold spectral phase transitions for a class of Jacobi matrices, Operator Theory: Adv. Appl. 124 (2001), 267–285.
- [8] J. Janas, S. Naboko, G. Stolz, Spectral theory for a class of periodically perturbed unbounded Jacobi matrices: elementary methods, J. Comput. Appl. Math. 171 (2004) 1-2, 265-276.
- [9] J. Janas, S. Naboko, G. Stolz, Decay bounds on eigenfunctions and the singular spectrum of unbounded Jacobi matrices, Int. Math. Res. Not. IMRN (2009), no. 4, 736–764.
- [10] M. Moszynski, Spectral properties of some Jacobi matrices with double weights, J. Math. Anal. Appl. 280 (2003), 400–412.
- [11] S. Pedersen, Absolutely continuous Jacobi operators, Proc. Amer. Math. Soc. 130 (2002), 2369–2376.
- J. Sahbani, Spectral properties of Jacobi matrices of certain birth and death processes, J. Operator Theory 56 (2006) 2, 377–390.
- J. Sahbani, Spectral theory of certain unbounded Jacobi matrices, J. Math. Anal. Appl. 342 (2008) 1, 663–681.
- [14] J. Sahbani, Spectral theory of a class of block Jacobi matrices and applications, J. Math. Anal. Appl. 438 (2016) 1, 93–118.

Jaouad Sahbani jaouad.sahbani@imj-prg.fr

Université Paris Diderot Institut de Mathématiques de Jussieu-Paris Rive Gauche-UMR7586 Bâtiment Sophie Germain-case 7012 5 rue Thomas Mann, 75205 Paris Cedex 13, France

Received: July 20, 2016. Accepted: July 28, 2016.