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Abstract. It is known that a purely off-diagonal Jacobi operator with coefficients
an = nα, α ∈ (0, 1], has a purely absolutely continuous spectrum filling the whole real
axis. We show that a 2-periodic perturbation of these operators creates a non trivial gap in
the spectrum.

Keywords: essential spectrum, spectral gap, periodic perturbation.

Mathematics Subject Classification: 47A10, 47B36, 39A70.

1. INTRODUCTION

In this note we consider Jacobi matrices of the form

J (an, bn) =




b1 a1 0 · · ·
a1 b2 a2

. . .

0 a2 b3
. . .

... . . . . . . . . .



, with an > 0 and bn ∈ R. (1.1)

We will especially focus on the case where the matrix elements an and bn are of the
form

an = nα + ηn for all n ≥ 1 (1.2)
ηn+2 = ηn and bn+2 = bn for all n ≥ 1, (1.3)

where α ∈ (0, 1]. Of course up to a translation one may assume without loss of
generality that

b1 = −b2 = b for some b ∈ R. (1.4)
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According to Carleman condition, see [1], J (an, bn) defines an essentially self-adjoint
operator on l2 = l2(N). Moreover, it is well known that if ηn = bn = 0, then
J (an, bn) = J (nα, 0) has a purely absolutely continuous spectrum filling the whole
real axis, see for example [6,13] and references therein. Our main result is the following.
Theorem 1.1. The operator J = J (nα + ηn, bn) is essentially self-adjoint and has
no essential spectrum in the interval (−

√
b2 + (η2 − η1)2,

√
b2 + (η2 − η1)2).

In particular, if b = 0, then we get the following known result obtained for example
in [2, 4, 8, 10].
Corollary 1.2. If b = 0, then σess(J ) = R \ (−|η2 − η1|, |η2 − η1|).

Similarly, a purely diagonal periodic perturbation creates also a non trivial gap:
Corollary 1.3. If η1 = η2 = 0, then σess(J ) = R \ (−|b|, |b|).

To show these results we transform J (an, bn) in a Block Jacobi matrix J (An, Bn)
acting in the Hilbert space l2(N,C2), where An is a nilpotent matrix. In particular,
squaring J (An, Bn) allows one to diagonalize it. This is related and in fact explains
deeply the trick used in [2,4]. Notice that no asymptotic analysis of the generalized
eigenfunctions is needed here.

2. PRELIMINARIES

Recall that the Jacobi matrix (1.1) induces an operator acting in l2 by the difference
expression

(τψ)n = an−1ψn−1 + bnψn + anψn+1 for all n ≥ 1, (2.1)
with an > 0, bn ∈ R and ψ0 = 0. Let Jmin be the restriction of τ to the subspace l20
of sequences with only finitely many non zero coordinates. It is easy to verify that
J ∗min = Jmax, where Jmax is the restriction of τ to D(Jmax) = {ψ ∈ l2 / τψ ∈ l2}.
Let J := Jmin = J ∗max be the closure of Jmin. Clearly, Jmin is essentially self-adjoint
on l20 if and only if Jmax is symmetric. In such a case, J = Jmax will be said essentially
self-adjoint on l20 and denoted by J (an, bn) when the coefficients dependence should
be stressed. If J is not essentially self-adjoint on l20, then J has uncountably many
self-adjoint extensions and each one has a purely discrete spectrum. For a deeper
discussion of the self-adjointness question of Jacobi matrices we refer the reader to [1].

The coming theorem follows from different known results, see [1, 3, 5–7,11,13].
Theorem 2.1. Let α > 0 and assume that an = nα and bn = λ(an + an−1). Then
the following assertions hold.

(a) If |λ| > 1, then J is essentially self-adjoint and has no essential spectrum
for all α > 0.

(b) If |λ| < 1, then α comes in the game as follows:
(b1) if α > 1, then J is not essentially self-adjoint on l20;
(b2) if 0 < α ≤ 1 , then J is essentially self-adjoint on l20 and has a purely

absolutely continuous spectrum filling the whole real axis R.
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(c) If λ = ±1, then J is essentially self-adjoint on l20 regardless of α, but:
(c1) if α > 2, then the essential spectrum of J is empty;
(c2) if 0 < α < 2, then the spectrum of J is absolutely continuous and fills the

semi-axis [0,±∞) (i.e. (−∞, 0] if λ = −1 and [0,+∞) if λ = 1);
(c3) if α = 2, then the spectrum of J is purely absolutely continuous and fills the

semi-axis [1/4,±∞).
Remark 2.2.
(i) The point (a) is a particular case of Theorem 4.1 of [7] ensuring that J (an, bn)

is essentially self-adjoint on l20 and has no essential spectrum if

lim
n→∞

an = +∞ and lim inf
n→∞

b2
n

a2
n + a2

n−1
> 2. (2.2)

(ii) The assertion (b1) extends Theorem 1.5 of page 507 of [1] which only covers the
case where λ = 0, for more details see [13].

(iii) The assertion (b2) can be deduced from [6,7], see also [13].
(iv) The point (c1) follows from Theorem 8 of [5]. Here we give a quite elementary

proof of this assertion based on an explicit computation of the resolvent that we
will use elsewhere in this note. More specifically, assume that

lim
n→∞

n2/an = 0

and

β−n = bn + (an + an−1) (respectively, β+
n = bn − (an + an−1)) is bounded

then J (an, bn) is essentially self-adjoint on l20 and has no essential spectrum.
Indeed, by using the unitary operator given by (Uψ)n = (−1)nψn, it is enough to
study the minus case. Moreover, by [1, Theorem 1.4, p. 505] and [1, the Corollary,
p. 506], the operator J is self-adjoint and semi-bounded. Recall that, according
to Hardy’s inequality, the Carleman operator defined by

(Cf)n = 1
n

j=n∑

j=1
fj (2.3)

is bounded in H. Thus the operator defined by

(Tf)n = 1√
an

j=n∑

j=1
fj (2.4)

is compact in H since n/√an tends to zero at infinity. Now it is easy to verify
that J = J (an, bn) is invertible and J−1 = −T ∗T which is clearly compact.
Hence σess(J ) = ∅.

(v) Notice that one may deduce also that if {n2/an}n≥1 is bounded, then
J± = J (an,±(an + an−1)) is invertible so that 0 /∈ σ(J±).
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The following lemma comes from [13].
Lemma 2.3. The operator J (ηn, βn) is J (an, bn)-compact (i.e. relatively compact
with respect to J (an, bn)) provided that

lim
n→∞

∣∣∣ηn
an

∣∣∣+
∣∣∣ηn

an−1
an
− ηn−1

∣∣∣+
∣∣∣ηn

bn
an
− βn

∣∣∣ = 0. (2.5)

Remark 2.4. If an = nα with 0 < α ≤ 1 and bn = 0, then conditions of Lemma 2.3
are equivalent to

lim
n→∞

(∣∣∣ ηn
nα

∣∣∣+ |∂ηn|+ |βn|
)

= 0. (2.6)

In contrast, according to Theorem 1.1, if ηn or βn is 2-periodic, then J (an+ηn, bn+βn)
has a spectral gap in its essential spectrum while the spectrum of J (an, bn) fills the
whole real axis. This illustrates the sharpness of our Lemma 2.3 .
Corollary 2.5. For α ∈ (0, 1), J (n2α−1,±2n2α−1) is J (n2α,±(n2α + (n− 1)2α))-
-compact operator.
Proof. Here ηn = n2α−1 and βn = n2α−1 + (n − 1)2α−1. Then it is clear that
ηn
n2α = n2α−2 → 0 at infinity. Similarly,

ηn
(n− 1)α
nα

− ηn−1 = nα−1(n− 1)α − (n− 1)2α−1 = O(n2α−2)

which tends to zero at infinity. Finally,

ηn
n2α + (n− 1)2α

n2α − βn = O(n2α−2).

The proof is finished. The minus case is similar.

Corollary 2.6. Assume that limn→∞ an = +∞, limn→∞ an+1/an = 1 and
limn→∞ bn/an = 2λ. Then J (1, 2λ) is J (an, bn)-compact.

The following Proposition does not follow from Lemma 2.3.
Proposition 2.7. The operator J (n,±(2n− 1)) is J (n2,±(n2 + (n− 1)2))-compact.
Proof. It is enough to treat the minus case, the plus case is similar. Put
J = J (n2,−(n2 + (n− 1)2)). We know that 0 /∈ σ(J) and

(J−1f)n = −
∞∑

k=n

1
k2

k∑

j=1
fj for all f ∈ H.

Let us set V = J (n,−(2n− 1)) and f ∈ l2(N). One has

−(V J−1f)n = n

∞∑

k=n+1

1
k2

k∑

j=1
fj − (2n− 1)

∞∑

k=n

1
k2

k∑

j=1
fj + (n− 1)

∞∑

k=n−1

1
k2

k∑

j=1
fj

= 1
(n− 1)n

n∑

j=1
fj −

1
n− 1fn

= (DCf)n − (Df)n,
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where C in the Carleman operator defined by (2.3) and D the diagonal operator
defined by (Df)1 = 0 and (Df)n = 1

n−1fn for all n ≥ 2. Since C is a bounded operator
in l2(N) and D is a compact one, we immediately deduce that V J−1 = D(C − I) is
compact.

3. BLOCK JACOBI MATRICES

Let H = l2(N,C2) be the Hilbert space of square summable vector-valued sequences
(ψn)n≥1 endowed with the scalar product

〈φ, ψ〉 =
∑

n∈Z
〈φn, ψn〉C2 ,

where 〈·, ·〉C2 is the usual scalar product of C2. Let An and Bn be two sequences of
2 × 2 matrices such that Bn = B∗n for all n ∈ Z. Here we denote by T ∗ the adjoint
matrix of a given matrix T . Let us consider the block Jacobi operator J = J (An, Bn)
acting in H by

(Jψ)n = A∗n−1ψn−1 +Bnψn +Anψn+1 for all n ≥ 1 (3.1)

with ψ0 = 0. In [14] we studied different classes of bounded self-adjoint block Jacobi
operators given by (3.1) with applications to some concrete models. In this section we
will focus on special unbounded cases. More specifically, we assume that

An =
(

0 0
αn 0

)
, Bn =

(
b βn
βn −b

)
, n ≥ 1, (3.2)

where b ∈ R, αn > 0, βn > 0 for all n ≥ 1, and

lim
n→+∞

αn = lim
n→+∞

βn = +∞ and
∑

n≥1

1
αn

= +∞. (3.3)

According to Carleman condition, see [1], J = J (An, Bn) is an essentially self-adjoint
in H.
Example 3.1. Let J (an, bn) be the Jacobi operator defined by (1.1) and
U : l2(N)→ l2(N,C2) defined by (Uψ)n = (ψ2n−1, ψ2n). It is clear that U is a unitary
operator and

UJ (an, bn)U−1 = J (An, Bn)

with An =
(

0 0
a2n 0

)
, Bn =

(
b2n−1 a2n−1
a2n−1 b2n

)
, n ≥ 1.

This explains partially our motivation to study block Jacobi matrices given by (3.1)
and (3.2). For example, if an and bn are given by (1.2) and (1.3), then it is enough to
study the case where

αn = (2n)α + η2 and βn = (2n− 1)α + η1 and b ∈ R.
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Proposition 3.2. Let

A′n =
(
αnβn 0

0 αnβn+1

)
, B′n =

(
b2 + α2

n−1 + β2
n 0

0 b2 + α2
n + β2

n

)
, n ≥ 1

with α0 = 0. The operator J = J (An, Bn) is essentially self-adjoint and
J 2 = J (A′n, B′n).

Proof. By direct computations based on the special form of the matrices An.

Corollary 3.3. In the representation l2(N,C2) = l2(N)⊕ l2(N) one has

J 2 = J1 ⊕ J2,

where (with α0 = 0)

J1 = J (αnβn, b2 + α2
n−1 + β2

n) and J2 = J (αnβn+1, b
2 + α2

n + β2
n).

Example 3.4. Assume that αn = nα and βn = (n− 1
2 )α for some α ∈ (0, 1). Then

{
αnβn =n2α − α

2 n
2α−1 + εn,

α2
n−1 + β2

n =n2α + (n− 1)2α − αn2α−1 + κn,

where εn, κn → 0 at infinity. Hence for some compact operator K one has

J1 = J (αnβn, α2
n−1 + β2

n) = J (n2α, n2α + (n− 1)2α)− α

2J (n2α−1, 2n2α−1) +K.

Since J (n2α−1, 2n2α−1) is J (n2α, n2α + (n− 1)2α)-compact we deduce that

σess(J1) = σess(J (n2α, n2α + (n− 1)2α)).

Similarly, we prove that for some compact operator K ′ one has

J2 = J (n2α, n2α + (n− 1)2α) + α

2J (n2α−1, 2n2α−1) +K ′

so that
σess(J2) = σess(J (n2α, n2α + (n− 1)2α)).

According to Example 3.1, J (An, Bn) is unitarily equivalent to 2−αJ (nα, 0), so that
σess(J (An, Bn)) = R. Hence,

σess(J (n2α, n2α + (n− 1)2α)) = [0,+∞).

This represents a simple proof of the point (c2) of Theorem 2.1 which is related to the
trick used by Dombrowski and Pedersen in [3, 4, 11].

Example 3.5. Assume that αn = n and βn = n− 1
2 . Then

{
αnβn =n2 − 1

2n,
α2
n−1 + β2

n =n2 + (n− 1)2 − n+ 1
4 .
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Hence
J1 = J (n2, n2 + (n− 1)2)− 1

2J (n, 2n− 1)− 1
4 .

Since J (n, 2n− 1) is J (n2, n2 + (n− 1)2)-compact, we deduce that

σess(J1) = σess(J (n2, n2 + (n− 1)2)− 1
4 .

Similarly, we prove that

J2 = J (n2, n2 + (n− 1)2) + 1
2J (n, 2n− 1)− 1

4
so that

σess(J2) = σess(J (n2, n2 + (n− 1)2))− 1
4 .

As σess(J (An, Bn) = R, we deduce that

σess(J (n2, n2 + (n− 1)2)) = [1/4 ,+∞).

This represents a simple proof of the point (c2) of Theorem 2.1 which is related also
to Dombrowski-Pedersen method’s, see [3, 4, 11].

Remark 3.6. Notice that in [13] we studied operators of the form J (nα, nα+(n−1)α))
with α > 0. In particular, we proved Mourre estimates for these operators with
α ∈ (0, 1]. The case where α ∈ (1, 2) is not covered by [13]. Indeed, in this case we were
not able to complete our proof for a lack of information on the asymptotic behavior of
the Green function of J that are now available in [9]. In other words, combining [13]
and [9] we get a Mourre estimate for J (nα, nα + (n− 1)α)) with α ∈ (0, 2). For α = 2,
no Mourre estimate is known to our knowledge.

Theorem 3.7. Assume that αn = nα + η2, βn = (n− 1
2 )α + η1 with α ∈ (0, 1]. Then

σess(J 2(An, Bn) = [b2 + (η2 − η1)2,+∞).

Proof. (i) Let us start with case α = 1 so that αn = n+ η2 and βn = n− 1
2 + η1. Then

{
αnβn =n2 + (η1 + η2 − 1

2 )n+ η2(η1 − 1
2 ),

α2
n−1 + β2

n =n2 + (n− 1)2 + (η1 + η2 − 1
2 )(2n− 1) + 2η2(η1 − 1

2 ) + (η1 − η2)2 − 1
4

with α0 = 0. Hence J1 = J ′1 − η2
2〈·, δ1〉δ1, where δ1 = (1, 0, · · · ) ∈ l2 and

J ′1 = J (n2, n2 + (n− 1)2) +
(
η1 + η2 −

1
2

)
J (n, 2n− 1)

+ η2

(
η1 −

1
2

)
J (1, 2)− 1

4 + b2 + (η2 − η1)2.

Since J (1, 2) and J (n, 2n− 1) are J (n2, n2 + (n− 1)2)-compact and

σess(J (n2, n2 + (n− 1)2)) = [1/4 ,+∞),
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we deduce that
σess(J1) = [b2 + (η2 − η1)2,+∞).

Similar calculation shows that

J2 = J1 + J (n, 2n− 1) + η2J (1, 2) + η2
2〈·, δ1〉δ1.

It follows that
σess(J2) = [b2 + (η2 − η1)2,+∞),

which finishes the proof of the desired assertion in this case.
(ii) Assume now that α ∈ (0, 1). We have then

{
αnβn =n2α − α

2 n
2α−1 + (η1 + η2)nα + η1η2 + εn,

α2
n−1 + β2

n =n2α + (n− 1)2α − αn2α−1 + 2(η1 + η2)nα + κn,

where εn, κn → 0 at infinity. Hence for some compact operator K one has

J1 = J (n2α, n2α + (n− 1)2α)

− α

2J (n2α−1, 2n2α−1) + (η1 + η2)J (nα, 2nα) + b2 + (η2 − η1)2 +K.

But J (nα, 2nα) and J (n2α−1, 2n2α−1) are J (n2α, n2α+(n−1)2α)-compact we deduce
that

σess(J1) = [b2 + (η2 − η1)2,+∞).

Similarly, we prove that σess(J2) = [b2 + (η2 − η1)2,+∞). The proof is finished.

4. PROOF OF THEOREM 1.1

Since an and bn are given by (1.2) and (1.3), then according to Example 3.1, J (an, bn)
is unitarily equivalent to 2αJ (An, Bn), where the coefficients of An and Bn are given
by

αn = nα + 2−αη2 , βn =
(
n− 1

2

)α
+ 2−αη1 and 2−αb ∈ R.

The proof can be completed by a direct application of Theorem 3.7.

5. PROOF OF COROLLARY 1.2

Since b = 0, then according to Theorem 1.1 one has

σess(J 2(an, 0)) =
[
(η2 − η1)2,+∞

)
.

But direct computation shows that UJ (an, 0)U−1 = −J (an, 0), where U is the
unitary operator on l2 defined by (Uψ)n = (−1)nψn. Hence the spectrum of J (an, 0)
is symmetric with respect to the origin and the desired equality follows.
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6. PROOF OF COROLLARY 1.3

Since η1 = η2 = 0, then according to Theorem 1.1, one has

σess(J 2(an, bn)) =
[
b2,+∞

)
.

In this case the spectrum of J (an, bn)) is, in general, not symmetric with respect to
the origin, see next Proposition. Nevertheless, we will show that the essential spectrum
of J (an, bn) is symmetric with respect to the origin which is enough for us. Indeed,
direct computation shows that the UJ (an, bn)U−1 = −J (an,−bn). In particular,

σess(J (an,−bn)) = −σess(J (an, bn))

But

J (an,−bn) =




−b a1 0 . . .

a1 b a2
. . .

0 a2 −b . . .
. . . . . . . . . . . .




=




0 0 0 . . .

0 b a2
. . .

0 a2 −b . . .
. . . . . . . . . . . .




+ finite rank operator.

It follows that
σess(J (an,−bn)) = σess(J (an+1, bn)).

If an = nα, α ∈ (0, 1), then an+1 − an → 0 at infinity. In particular, the difference
J (an+1, bn) − J (an, bn) is a compact operator. In particular, σess(J (an,−bn)) =
σess(J (an, bn)). Hence

σess(J (an, bn)) = −σess(J (an, bn)),

which is the desired property.
If an = n, then J (an+1, bn) = J (an, bn) + J (1, 0). But, according to Lemma 2.3,

J (1, 0) is J (an, bn)-compact. In particular,

σess(J (an,−bn)) = σess(J (an+1, bn)) = σess(J (an, bn).

The proof of of Corollary 1.2 is complete.

Proposition 6.1. Assume that αn = n+ η2 and βn = n− 1
2 + η1.

(i) If η1 − 1
2 ≥ 0 and η2 ≥ 0, then J (An, Bn) has at most two eigenvalues in the

spectral gap G = (−
√
b2 + (η1 − η2)2,

√
b2 + (η1 − η2)2) and a purely absolutely

continuous spectrum filling R \G.
(ii) b is an eigenvalue of J (An, Bn) if and only if η2 > η1. In this case, −b is an

eigenvalue of J (An, Bn) if and only if b = 0.
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Proof. (i) Recall that in this case J1 = J ′1 − η2
2〈·, δ1〉δ1, where

J ′1 = J (n2, n2 + (n− 1)2) +
(
η1 + η2 −

1
2

)
J (n, 2n− 1)

+ η2

(
η1 −

1
2

)
J (1, 2)− 1

4 + b2 + (η2 − η1)2.

Consider the self-adjoint operator defined on l2 by

(iAψ)n = nψn+1 − (n− 1)ψn−1.

According to [13], A is J (n2, n2 + (n− 1)2)-bounded and the commutator

[J ′1, iA] = J 2(n, 2n− 1) + 2
(
η1 + η2 −

1
2

)
J (n, 2n− 1) + η2

(
η1 −

1
2

) (
4− J 2(1, 0)

)
.

But J (n, 2n − 1) and 4 − J 2(1, 0) are positive operators. Hence, according to
the Putnam-Kato theorem, J ′1 has a purely absolutely continuous spectrum if
η1 − 1

2 ≥ 0 and η2 ≥ 0. In particular, J1 has a purely absolutely continuous spec-
trum on [b2 + (η1 − η2)2,+∞) plus at most a simple eigenvalue in the spectral gap
(−∞, b2 + (η1 − η2)2).

Similarly, we show that J2 has a purely absolutely continuous spectrum if
η1 + 1

2 ≥ 0 and η2 ≥ 0. Finally, if η1 − 1
2 ≥ 0 and η2 ≥ 0, then J (An, Bn) is purely

absolutely continuous on R \ (−
√
b2 + (η1 − η2)2,

√
b2 + (η1 − η2)2) and has at most

two eigenvalues in the spectral gap (−
√
b2 + (η1 − η2)2,

√
b2 + (η1 − η2)2).

In contrast, b is an eigenvalue of J (An, Bn) if and only if there exists an non zero

ψ defined by ψn =
(
xn
yn

)
such that, for all n ≥ 1

{
βnyn +αn−1yn−1 = 0,
βnxn−2byn +αnxn+1 = 0

with α0 = 0. By induction we show that yn = 0 and xn+1 = −(βn/αn)xn, for all
n ≥ 1. Hence, b is an eigenvalue of J (An, Bn) if and only if the sequence defined by
x1 = 1 and

xn+1 = (−1)n
n∏

i=1

βi
αi
, n ≥ 1, (6.1)

is square summable. But according to Gauss’s test this is equivalent to η2 > η1, since

x2
n

x2
n+1

= α2
n

β2
n

= 1 +
2(η2 − η1 + 1

2 )
n

+ gn
n2 , as n→∞,

for some bounded sequence gn. Notice that in this case the associated eigenvectors are
proportional to the vector ψ given by ψn = (xn, 0), for all n ≥ 1.

Similarly, one may prove that if −b is an eigenvalue of J (An, Bn), then η2 > η1
and associated eigenvectors are of the form ϕn = (cxn, yn), where xn is given by (6.1).
Hence if b 6= 0, then b and −b are two distinct eigenvalues of J so that 〈ψ,ϕ〉 = 0
which implies that c = 0 so that yn = 0 and −b is not an eigenvalue of J .
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Remark 6.2. Notice that the same argument shows that if α ∈ (0, 1), then b is an
eigenvalue of J (An, Bn) if and only if the sequence xn defined by (6.1) is square
summable. Here again one may show that this is equivalent to η2 > η1.

Proposition 6.3. Assume that αn = βn, the sequence αn(2αn − αn+1 − αn−1) is
bounded below and limn→∞ n/αn = 0. Then σess(J1) = σess(J2) = ∅. In particular,
J (an, 0) has no essential spectrum if a2n−1 = a2n = αn.

Proof. Recall that J1 = J (α2
n, α

2
n + α2

n−1) and J2 = J (αnαn+1, 2α2
n). Moreover,

the sequence

2α2
n − αnαn+1 − αnαn−1 = αn(2αn − αn+1 − αn−1)

is bounded from below. A direct application of Theorem 8 of [5] to J1,J2 finishes the
proof.

Example 6.4. The last proposition applies to αn = n lnn. In particular, J (n lnn, 0)
has a purely absolutely continuous spectrum filling the whole real axis, while J (an, 0)
has no essential spectrum if a2n−1 = a2n = n lnn.

Proposition 6.5. Assume that βn = cαn for some positive constant c 6= 1 and
αn/αn+1 → 1 a n → ∞. Then J (An, Bn) has no essential spectrum. In particular,
the operator J (an, 0) has no essential spectrum if a2n−1 = ca2n = cnα with α ∈ (0, 1).

Proof. Since c 6= 1, one has

lim
n→∞

(α2
n−1 + β2

n)2

α2
nβ

2
n + α2

n−1β
2
n−1

= (c2 + 1)2

2c2 > 2.

Hence, according to (i) of the remark following Theorem 2.1, J1 has purely discrete
spectrum. Similar argument works for J2. The proof is complete.
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