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Abstract. It is known that a purely off-diagonal Jacobi operator with coefficients
an = n°%, a € (0,1], has a purely absolutely continuous spectrum filling the whole real
axis. We show that a 2-periodic perturbation of these operators creates a non trivial gap in
the spectrum.
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1. INTRODUCTION

In this note we consider Jacobi matrices of the form

b1 aq 0
aq b2 as .

J(an,by) = ) , with a, >0 and b, € R. (1.1)
0 a bg, .

We will especially focus on the case where the matrix elements a,, and b,, are of the
form

an =n%+mn, forall n>1 (1.2
NMnto =N and byyo =0b, forall n>1,

where a € (0,1]. Of course up to a translation one may assume without loss of
generality that
by = —-by=0>b forsome beR. (1.4)
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According to Carleman condition, see [1], J(an,by,) defines an essentially self-adjoint
operator on [2 = [2(N). Moreover, it is well known that if n, = b, = 0, then
J(an,b,) = J(n%,0) has a purely absolutely continuous spectrum filling the whole
real axis, see for example [6,13] and references therein. Our main result is the following,.

Theorem 1.1. The operator J = J(n® + n,,b,) is essentially self-adjoint and has
no essential spectrum in the interval (—/b2 + (n2 — m1)%, /b2 + (2 — m)?).

In particular, if b = 0, then we get the following known result obtained for example
in [2,4,8,10].

Corollary 1.2. Ifb =0, then gcss(J) =R\ (—|n2 — ml, [n2 — m]).
Similarly, a purely diagonal periodic perturbation creates also a non trivial gap:
Corollary 1.3. If ;1 =12 =0, then o.55(J) =R\ (-0, 1]0])-

To show these results we transform J(an,,b,) in a Block Jacobi matrix J(A,, By)
acting in the Hilbert space [?(N,C2), where A,, is a nilpotent matrix. In particular,
squaring J (A, B,,) allows one to diagonalize it. This is related and in fact explains
deeply the trick used in [2,4]. Notice that no asymptotic analysis of the generalized
eigenfunctions is needed here.

2. PRELIMINARIES

Recall that the Jacobi matrix (1.1) induces an operator acting in {? by the difference
expression
(TY)n = ap—1Vp—1 + bntp + apthpy1 foralln > 1, (2.1)

with a,, > 0, b, € R and ¥ = 0. Let Jpnin be the restriction of 7 to the subspace 12
of sequences with only finitely many non zero coordinates. It is easy to verify that
T i = Tmazs where Jrqq is the restriction of 7 to D(Jmaz) = {¢ € 12 / ¢ € I2}.
Let J := Jmin = T, a0 be the closure of Jpin. Clearly, Jmin is essentially self-adjoint
on [2 if and only if 4. is symmetric. In such a case, J = Jpmax Will be said essentially
self-adjoint on [2 and denoted by J(a,,b,) when the coefficients dependence should
be stressed. If J is not essentially self-adjoint on /2, then J has uncountably many
self-adjoint extensions and each one has a purely discrete spectrum. For a deeper
discussion of the self-adjointness question of Jacobi matrices we refer the reader to [1].
The coming theorem follows from different known results, see [1,3,5-7,11,13].

Theorem 2.1. Let o > 0 and assume that a, = n® and b, = Aa, + an—1). Then
the following assertions hold.

(a) If |\| > 1, then J is essentially self-adjoint and has no essential spectrum
for all a > 0.
(b) If M| < 1, then a comes in the game as follows:
(bl) if a > 1, then J is not essentially self-adjoint on I3;
(b2) if 0 < a <1, then J is essentially self-adjoint on 13 and has a purely
absolutely continuous spectrum filling the whole real axis R.
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(c) If X = =1, then J is essentially self-adjoint on I3 regardless of o, but:

(cl) if a > 2, then the essential spectrum of J is empty;
(c2) if 0 < a < 2, then the spectrum of J is absolutely continuous and fills the

semi-azis [0, £00) (i.e. (—00,0] if A= —1 and [0,+00) if A =1);

(c3) if a =2, then the spectrum of J is purely absolutely continuous and fills the

semi-axis [1/4, £00).

Remark 2.2.

(1)

The point (a) is a particular case of Theorem 4.1 of [7] ensuring that J(ay,by,)
is essentially self-adjoint on I3 and has no essential spectrum if

b2

lim a, =400 and liminf ——"5— > 2. (2.2)

n—o0 n— oo a% —+ a, _q

The assertion (b1) extends Theorem 1.5 of page 507 of [1] which only covers the
case where A = 0, for more details see [13].

The assertion (b2) can be deduced from [6,7], see also [13].

The point (c1) follows from Theorem 8 of [5]. Here we give a quite elementary
proof of this assertion based on an explicit computation of the resolvent that we
will use elsewhere in this note. More specifically, assume that

lim n?/a, =0
n—oo

B = by + (ay + an_1) (respectively, B;7 = b, — (an + an_1)) is bounded
then J(an,by) is essentially self-adjoint on 13 and has no essential spectrum.
Indeed, by using the unitary operator given by (Uv),, = (—1)",, it is enough to
study the minus case. Moreover, by [1, Theorem 1.4, p. 505] and [1, the Corollary,

p. 506], the operator J is self-adjoint and semi-bounded. Recall that, according
to Hardy’s inequality, the Carleman operator defined by

CH=231, (2.3
j=1

is bounded in ‘H. Thus the operator defined by

1 =
(Tf)n = = ; fi (2.4)

is compact in H since n/,/a, tends to zero at infinity. Now it is easy to verify
that J = J(an,b,) is invertible and J~! = —T*T which is clearly compact.
Hence o.s5(J) = 0.

Notice that one may deduce also that if {n?/a,},>1 is bounded, then
J* = J(an, £(an + a,_1)) is invertible so that 0 ¢ o(J ).
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The following lemma comes from [13].

Lemma 2.3. The operator J (N, Bn) is T (an,bn)-compact (i.e. relatively compact
with respect to J(an,by,)) provided that

N
QAn
Remark 2.4. If a,, = n® with 0 < a <1 and b,, = 0, then conditions of Lemma 2.3

are equivalent to

Ay —
7771 nol _777171’ +
an

lim
n— oo

+

by,
3| = 0. 2.
nanﬁ 0 (2.5)

I
na

+ 0l + 1n]) = 0. (2.6)

lim (
n—oo
In contrast, according to Theorem 1.1, if n,, or 3, is 2-periodic, then J (an +nn, bn+ Bn)
has a spectral gap in its essential spectrum while the spectrum of J(ay, b, ) fills the
whole real axis. This illustrates the sharpness of our Lemma 2.3 .
Corollary 2.5. For a € (0,1), J(n?**~ 1, £2n%271) is J(n?*, £(n?* + (n — 1)2%))-
-compact operator.

Proof. Here 1, = n?*~! and B, = n?*! + (n — 1)2~1. Then it is clear that

Je = n?*~2 — 0 at infinity. Similarly,

(n—1)

e e =0T (= 1) = (= 1P = O(n )

n

which tends to zero at infinity. Finally,
n2o¢ + (n _ 1)204

%T —Bn = O(nza_2)~
The proof is finished. The minus case is similar. O
Corollary 2.6. Assume that lim, o a, = oo, lim, o ans1/a, = 1 and

lim,, o0 by /an = 2X. Then J(1,2X) is J(an, b,)-compact.
The following Proposition does not follow from Lemma 2.3.
Proposition 2.7. The operator J(n,£(2n — 1)) is J(n?, £(n? + (n — 1)?))-compact.

Proof. It is enough to treat the minus case, the plus case is similar. Put
J =J 02 —(n*+ (n—1)%)). We know that 0 ¢ o(J) and

00 1 k
(jflf)n:*Zﬁij forall feH.
k=n j=1

Let us set V = J(n,—(2n — 1)) and f € I2(N). One has

0o k [ k [
SUFSNIID SIS SERICIEEI) D S FNCESIED DRSS BF7
j=1

k=n+1 Jj=1 k=n k=n—1 Jj=1

1 - 1
- (n—l)n;fj_n—lf"

J

= (Dcf>n_(Df)na
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where C in the Carleman operator defined by (2.3) and D the diagonal operator
defined by (D f)1 = 0 and (Df), = =15 f, for all n > 2. Since C'is a bounded operator
in [2(N) and D is a compact one, we immediately deduce that VJ~! = D(C —I) is
compact. O]

3. BLOCK JACOBI MATRICES

Let H = [?(N, C?) be the Hilbert space of square summable vector-valued sequences
(1n)n>1 endowed with the scalar product

(@) = (Sn, n)c2,
nez

where (-, -)¢2 is the usual scalar product of C2. Let A,, and B,, be two sequences of
2 x 2 matrices such that B, = B} for all n € Z. Here we denote by T the adjoint
matrix of a given matrix T'. Let us consider the block Jacobi operator J = J(A4,, By)
acting in H by

(T)p = Al _1p—1+ Byt + Apthppyr forall n>1 (3.1)

with 19 = 0. In [14] we studied different classes of bounded self-adjoint block Jacobi
operators given by (3.1) with applications to some concrete models. In this section we
will focus on special unbounded cases. More specifically, we assume that

An = (O?n 8) 5 Bn = (ﬂbn é%) 3 n Z 1a (32)

where b € R, a0, > 0,8, >0 for all n > 1, and

1
lim o, = lim B, =-+co and Z — = +o00. (3.3)
o

n—-+oo n—-+o0o n
n>1

According to Carleman condition, see [1], J = J(Ax, By) is an essentially self-adjoint

in H.

Example 3.1. Let J(an,b,) be the Jacobi operator defined by (1.1) and
U : 1?(N) = [2(N,C?) defined by (UY), = (Yan_1,%2,). It is clear that U is a unitary
operator and

Z/[J(an;bn)u_l = j(An7Bn)

with A,, = (aO 8) , B, = (b%_l ag"_l) , n>1.

2n A2n—1 ban

This explains partially our motivation to study block Jacobi matrices given by (3.1)
and (3.2). For example, if a,, and b, are given by (1.2) and (1.3), then it is enough to
study the case where

ap=02n)+mn and B,=2n—-1)%+mn and beR
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Proposition 3.2. Let

/! anﬁn 0 / b2 + 0627]_ + 52 0
= — n n >
An ( 0 anﬂn+1> ’ Bn ( 0 b2 + a% + ﬂ% , n>1

with a9 = 0. The operator J = J(An,Bn) is essentially self-adjoint and
J?=J(A,,By).

Proof. By direct computations based on the special form of the matrices A4,,. O

Corollary 3.3. In the representation [*(N,C?) = [?(N) @ I2(N) one has
T =T8T,
where (with ag = 0)
Ji = T(nfn, 0> +ap 1 +67)  and  Jo = T(anfny1,0® +f + B7).
Example 3.4. Assume that o, = n® and 3, = (n — 3)* for some « € (0,1). Then

anﬁn =n?" — %’n?a_l + €n,
a2 |+ B2=n%*+(n—1)2 —an?* ! 4+ k,,

where €, k, — 0 at infinity. Hence for some compact operator K one has
Ti = (@B y +B2) = T (07,0 + (n = 1)) = T (n** 7, 2071 + K.
Since J (n?*~1, 2n2271) is J(n?*,n?* + (n — 1)2%)-compact we deduce that
ess(T1) = Oess (T (0%, 0% + (n — 1)°%)).
Similarly, we prove that for some compact operator K’ one has
Jo = T (%0 + (n = 1)) + 27 (02!, 202071) + K’

so that
Tess(J2) = Oess (T (0>, 0% 4 (n — 1)2)).

According to Example 3.1, J(A,, B,,) is unitarily equivalent to 27*7(n®,0), so that
Oess(J(An, Brn)) = R. Hence,

Jess(j(nQQ,nza +(n— 1)20‘)) =10, +00).

This represents a simple proof of the point (¢2) of Theorem 2.1 which is related to the
trick used by Dombrowski and Pedersen in [3,4,11].

Example 3.5. Assume that o, =n and 8, =n — % Then

anﬁn:nQ_%nv
a2 +B82=n’+n—-12-n+7.
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Hence , ,
Ji =700+ (n=1)%) = 5T (n.2n 1) - 4.

Since J(n,2n — 1) is J(n? n? + (n — 1)?)-compact, we deduce that

1
Uess<j1) = 0’658(._7(712,”2 + (n - 1)2) - Z

Similarly, we prove that

1 1
jz=..7(n2,n2+(n—1)2)+§j(n,2n—1)—1

so that 1
Uess(t72) = Jess(j(nzvnz + (n - 1)2)) - Z

As 0ess(JT (A, Bn) = R, we deduce that
0683(n7(n2a n® + (n— 1)2)) = [1/4 , 4-00).

This represents a simple proof of the point (c2) of Theorem 2.1 which is related also
to Dombrowski-Pedersen method’s, see [3,4,11].

Remark 3.6. Notice that in [13] we studied operators of the form J(n%*, n*+(n—1)%))
with @ > 0. In particular, we proved Mourre estimates for these operators with
a € (0,1]. The case where a € (1,2) is not covered by [13]. Indeed, in this case we were
not able to complete our proof for a lack of information on the asymptotic behavior of
the Green function of J that are now available in [9]. In other words, combining [13]
and [9] we get a Mourre estimate for J(n®*, n® + (n —1)%)) with a € (0,2). For a = 2,
no Mourre estimate is known to our knowledge.

Theorem 3.7. Assume that o, = n® + 12, B, = (n — 1) +n1 with a € (0,1]. Then

O—ess(jz(An7 Bn) = [b2 + (772 - 771)27 +OO)

Proof. (i) Let us start with case a« =1 so that a,, = n+n5 and 5, =n— % +n1. Then

{ anﬂn=n2+(771+772—%)”+772(771 - %)7
ol +BE=n+ =124+ (m+n—5Cn—1)+2n0n —3)+ (m —n2)*—

with ag = 0. Hence J; = J{ — n3(-,61)d1, where §; = (1,0,---) € [? and

1
J =TJ0m*n* 4+ (n—1)%) + (771 + 19 — i)J(an— 1)
1 1
+772(771 - §)j(1,2) 1 + 0%+ (02 —m)>.
Since J(1,2) and J(n,2n — 1) are J(n?,n? 4+ (n — 1)?)-compact and

Oess(T(?,n* + (n—1)%)) = [1/4, +00),
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we deduce that
Oess(J1) = [b2 + (2 — 771)2> +00).

Similar calculation shows that
Jo =T +T(n,2n — 1) + 02T (1,2) + 13 (-, 61)61.
It follows that
Uess(jQ) = [b2 + (772 - 771)27 —|—OO),

which finishes the proof of the desired assertion in this case.
(if) Assume now that o € (0,1). We have then

B =0 — 02 4 (g 4 n2)n® + mne + en,
an_y + Br =0+ (n— 1) —an®* 7 + 201 + n2)n® + K,

where €, k, — 0 at infinity. Hence for some compact operator K one has
jl _ j(n2a’n2a + (n o 1)204)
o
_ §j(n2a—1’ 2n2a—1) + (771 + nz)j(na’ 2na> 4 b2 + (772 _ ,'71)2 I K.
But J(n%,2n%) and J(n?*~t, 2n22~1) are J(n2*, n?* + (n—1)2%)-compact we deduce

that
Uess(jl) = [b2 + (772 - 771)27 +OO)

Similarly, we prove that oess(J2) = [b% + (72 — 11)?, +00). The proof is finished. [

4. PROOF OF THEOREM 1.1

Since a,, and b,, are given by (1.2) and (1.3), then according to Example 3.1, J (an, by)
is unitarily equivalent to 2¢7 (A, B,), where the coefficients of A,, and B, are given
by
1\«
ap=n*+2"%y, B, = (n — 5) +27%); and 27% €R.

The proof can be completed by a direct application of Theorem 3.7.

5. PROOF OF COROLLARY 1.2
Since b = 0, then according to Theorem 1.1 one has
0658(32(%”0)) = [(772 - 771)27 +OO) .

But direct computation shows that UJ(a,,0)U~! = —J(a,,0), where U is the
unitary operator on ? defined by (Uv),, = (—1)"t,. Hence the spectrum of J(a,,0)
is symmetric with respect to the origin and the desired equality follows.
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6. PROOF OF COROLLARY 1.3
Since n; = 2 = 0, then according to Theorem 1.1, one has
0655(\72<an7 bn)) = [b27 +OO) .

In this case the spectrum of J(a,,b,)) is, in general, not symmetric with respect to
the origin, see next Proposition. Nevertheless, we will show that the essential spectrum
of J(an,by,) is symmetric with respect to the origin which is enough for us. Indeed,
direct computation shows that the UJ (an, b,)U "' = —J(a,, —b,). In particular,

Uess(j(any _bn)) - _Uess(j(ana bn))

But
—b a1 O 0 0 0

T (an, —by) = a boa e f )0 b ey + finite rank operator.
0 as —b . 0 as —b s

It follows that
Jess(j(an7 _bn)) = Uess(j(an+17 bn))
If a, = n* «a € (0,1), then a,+1 — a, — 0 at infinity. In particular, the difference

J(ani1,bn) — T (an,by) is a compact operator. In particular, oess(J (an, —bn)) =
Oess(T (an,by)). Hence

Uess(j(any bn)) = *O—ess(j(ana bn))a

which is the desired property.
If a, = n, then J(ant1,bn) = T (an,bn) + J(1,0). But, according to Lemma 2.3,
J(1,0) is J(an, by )-compact. In particular,

O'ess(j(any *bn)) = O'ess(j(an-‘rla bn)) = O'ess(j(ana bn)
The proof of of Corollary 1.2 is complete.

Proposition 6.1. Assume that o, = n+ 12 and 5, =n — % +n1.

(i) If m — 5 = 0 and n2 > 0, then J (A, By) has at most two eigenvalues in the
spectral gap G = (—/b2 + (1 — 12)2, /b2 + (m1 — 1m2)%) and a purely absolutely
continuous spectrum filling R\ G.

(ii) b is an eigenvalue of J(An, By) if and only if no > n1. In this case, —b is an
eigenvalue of J(An, By) if and only if b= 0.
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Proof. (i) Recall that in this case J3 = J{ — n3(-,01)d1, where

1
T =T+ =12 + (m+nme— 5) T (0,20 1)

1 1
+772(?71 - 5)«7(172) 1 + 0%+ (2 —m)>.

Consider the self-adjoint operator defined on {2 by

((AY)n = nPpi1 — (0 — D) ¢Pp_1.
According to [13], A is J(n?,n? + (n — 1)?)-bounded and the commutator

[J],iA] = T*(n,2n — 1)+2(771+772 — %)j(n,2n71)+772(771 — %) (47\72(1,0)).

But J(n,2n — 1) and 4 — J%(1,0) are positive operators. Hence, according to
the Putnam-Kato theorem, J{ has a purely absolutely continuous spectrum if
m — % > 0 and 72 > 0. In particular, J; has a purely absolutely continuous spec-
trum on [b2 + (71 — 12)?, +00) plus at most a simple eigenvalue in the spectral gap
(=00, b + (m —12)?).

Similarly, we show that Jo has a purely absolutely continuous spectrum if
m+ % >0 and 72 > 0. Finally, if n; — % > 0 and 7y > 0, then J(A,, B,) is purely
absolutely continuous on R\ (—/b2 + (m1 — 172)2, /b + (1 — 12)2) and has at most
two eigenvalues in the spectral gap (—/b% + (11 — 12)2, /b2 + (m1 — 12)?).

In contrast, b is an eigenvalue of J(A,, B,,) if and only if there exists an non zero
¥ defined by 1, = <z“> such that, for all n > 1

n

ﬂnyn ‘an—1Yn—1= 07
Brnxn =20y, +apxpyr =0

with ag = 0. By induction we show that y, = 0 and x,11 = —(8,/an)x,, for all
n > 1. Hence, b is an eigenvalue of J(A4,, B,) if and only if the sequence defined by
1 = 1 and

n
B;
Tyl = (—1)nH j, n>1, (6.1)
i=1 "
is square summable. But according to Gauss’s test this is equivalent to 7y > 71, since
2 2 1
x e 2 —m + 35
2” :%:14——072 n 2)_'_9%) as n — oo,
v, Ba n n

for some bounded sequence g,,. Notice that in this case the associated eigenvectors are
proportional to the vector ¢ given by ,, = (z,,0), for all n > 1.

Similarly, one may prove that if —b is an eigenvalue of J(A,, B,), then 1y > 1
and associated eigenvectors are of the form ¢,, = (cz,,y,), where x,, is given by (6.1).
Hence if b # 0, then b and —b are two distinct eigenvalues of J so that (¢, 9) = 0
which implies that ¢ = 0 so that y, = 0 and —b is not an eigenvalue of 7. O
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Remark 6.2. Notice that the same argument shows that if o € (0, 1), then b is an
eigenvalue of J(A,, By,) if and only if the sequence z,, defined by (6.1) is square
summable. Here again one may show that this is equivalent to ns > ;.

Proposition 6.3. Assume that o, = B, the sequence (20, — i1 — Qp—1) is
bounded below and lim,_, oo n/ay = 0. Then oess(J1) = ess(J2) = 0. In particular,
J(an,0) has no essential spectrum if asn—1 = a2, = aup,.

Proof. Recall that J; = J(a2,02 +a2_;) and Jo = J(a,ani1,202). Moreover,
the sequence

2
205 — QpOpg1 — Qp0y—1 = 0 (20 — Qg1 — Q1)

is bounded from below. A direct application of Theorem 8 of [5] to J1, J2 finishes the
proof. [

Example 6.4. The last proposition applies to «;,, = nlnn. In particular, 7 (nlnn,0)
has a purely absolutely continuous spectrum filling the whole real axis, while J(ay, 0)
has no essential spectrum if ag, 1 = as, = nlnn.

Proposition 6.5. Assume that 5, = co,, for some positive constant ¢ # 1 and
an/ant1 = 1 an = oo. Then J(An, By,) has no essential spectrum. In particular,
the operator J(a,,0) has no essential spectrum if asn—1 = cagy, = cn® with o € (0,1).

Proof. Since ¢ # 1, one has

@ T8 (41?2
n— o0 a%ﬁ% + O‘%—lﬁ%—l 2¢? '

Hence, according to (i) of the remark following Theorem 2.1, J; has purely discrete
spectrum. Similar argument works for J5. The proof is complete. O
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