PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of Equisetum hyemale in Constructed Wetland: Influence of Wastewater Dilution and Contact Time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the systematic approach to evaluate potency of Equisetum hyemale in constructed wetland, bio-degradation and adsorption of TSS, COD, phosphate, and LAS were described. The overall objective of the study was to determine the ability of Equisetum hyemale to remove pollutants in laundry waste water in several percentage of dilution and contact time. This research used 4 groups of Equisetum hyemale in each reactor. Equisetum hyemale was planted in the richest nutrient of soil. The laundry waste water was contacted in batch system. The Equisetum hyemale removed TSS, COD, Phosphate, LAS until 90% in variation of waste water dilution after 2 days of contact. Equisetum hyemale showed best performance in 100% of laundry waste water. It was observed that 4 days of contact time were optimal for removing pollutants in laundry waste water. The Equisetum hyemale removed TSS, COD, Phosphate, LAS up to 90% in variation of contact time.
Rocznik
Strony
174--179
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Study Program of Environmental Engineering, Faculty Science and Technology, Universitas Airlangga, Indonesia
  • Study Program of Environmental Engineering, Faculty Science and Technology, Universitas Airlangga, Indonesia
  • Study Program of Biology, Faculty Science and Technology, Universitas Airlangga, Indonesia
  • Study Program of Environmental Engineering, Faculty Science and Technology, Universitas Airlangga, Indonesia
Bibliografia
  • 1. Abdel-Shafy, H. I., El-Khateeb, M. Regelsberger, El-Sheikh, R., Shehata, M., 2009. Integrated System for the Treatment of Blackwater and Greywater via UASB and Constructed Wetland in Egypt. Desalination and Water Treatment, 8(1–3), 272–278.
  • 2. APHA, 2005. Standart Methods for The Examination of Water & Wastewater. American Public Health Association.
  • 3. Davison, L., Headly, T., Pratt, K. 2005. Aspect of Design, Structure, Performance and Operation of reed beds – eight year experience in Northeastern New South Wales, Australia, Water Science Technology, 51(10), 129–138.
  • 4. Jóźwiakowski K., Bugajski P., Kurek K., de Carvalho M., Almeida M.A., Gajewska M., Siwiec T., Borowski G., Czekała W., Dach J., Gajewska M. 2018. The efficiency and technological reliability of biogenic compounds removal during long-term operation of a one-stage subsurface horizontal flow constructed wetland. Separation and Purification Technology, vol. 202, 216-226.
  • 5. Gosh, D., Gopal, B., 2010. Effect of Hydraulic Retention Time on the Treatment of Secondary Effluent in a Subsurface Flow Constructed Wetland. Ecological Engineering, 36(8), 1044–1051.
  • 6. Kim, T. H., Park, C., Kim, S., 2005. Water Recycling from Desalination and Purification Process of Reactve Dye Manufacturing Industry by Combined Membran Filtration. Journal of Cleaner Production, 13(8), 779–786.
  • 7. Luca, G.A.D., Maine, M.A., Mufarregem M.M., Hadad, H.R., Pedro, M.C., Sánchez, G.C., Caffaratti, S.E., 2017. Phosporus distribution pattern in sediments of natural and constructed wetlands. Ecological Engineering, 108, 227–233.
  • 8. Liu, H., Hu, Z., Zhang, J., Ngo, H.H., Guo, W., Liang, S., Fan, J., Lu, S., Wu, H., 2016. Optimization on Supply and Distribution of Dissolved Oxygen in Constructed Wetlands: A Review. Bioresource Technology, 214, 797–805.
  • 9. Merino-Solís, M.L., Villegas, E., Anda, J., López-López, A., 2015. The Effect of the Hydraulic Retention Time on the Performance of an Ecological Wastewater Treatment System: An Anaerobic Filter with a Constructed Wetland. Water, 7, 1149–1163.
  • 10. Meng, P., Pei, H., Hu, W., Shao, Y., Li, Z., 2014. How to Increase Microbial Degradation in Constructed Wetlands: Influencing Factor and Improvement Measures. Bioresource Technology, 157, 316–326.
  • 11. Prodanovic, V., Hatt, B., McCarthy, D., Zhang, K., Deletic, A., 2017. Green walls for greywater reuse: Understanding the le of media on pollutant removal. Ecological Engineering, 102, 625–635.
  • 12. Puchlik, M., 2016. Application of Constructed Wetlands for Treatment of Wastewater form Fruit and Vegetable Industry. Journal of Ecological Engineering, 17(1), 131–135.
  • 13. Qin, R., Chen, H,. The Procession of Constructed Wetland Removal Mechanism of Pollutants. 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016), Atlantis Press, 568–570.
  • 14. Sawadogo, B., Sou, M., Hijikata, N., Sangare, D., Maiga, A. H., dan Funamizu, N., 2014. Effect of Detergents from Greywater on Irrigated Plants: Case of Okra (Abelmoschus esculentus) and Lettuce (Lactuca sativa) Journal of Arid Land Studies, 24(1), 117–120.
  • 15. Shao, Y., Pei, H., Hu, W., Chanway, C. P., Meng, P., Ji, Y., dan Li, Z., 2014. Bioaugmentation In Lab Scale Constructed Wetland Microcosms For Treating Polluted River Water And Domestic Wastewater In Northern China. Journal International Biodeterioration & Biodegradation, 95(A), 151–159.
  • 16. Sultana, M., Mourti, C., Tatoulis, T., Akratos, C. S., 2015. Effect of Hydraulic Retention Time, Temperature, and Organic Load on a Horizontal Subsurface Flow Constructed Wetland Treating Cheese Whey Wastewater. Journal of Chemical Technology and Biotechnolog, 91(3),726–732.
  • 17. Sumisha, A., Arthanareeswaran, G., Thuyavan, Y. L., Ismail, A. F., Chakraborty, S., 2015. Treatment of Laundry Wastewater Using Polyethersulfone/ Polyvinylpyrollidone Ultrafiltration Membranes. Ecotoxicology and Environmental Safety, 121(2015), 174–179.
  • 18. Thomas, R., Gough, R., Freeman, C., 2017. Linear Alkylbenzene Sulfonat (LAS) Removal in Constructed Wetlands: The Role of Plants in the Treatment of a Typical Pharamaceutical and Personal Care Product. Ecological Engineering, 106(2017), 415–422.
  • 19. Timotewos, M.T., Kassa, K., Reddythota, D., 2017. Selection of Mesocosm to Remove Nutrients with Consructed Wetlands. Journal of Ecological Engineering, 18(4), 42–51.
  • 20. Wu, S., Kuschk, P., Brix, H., Vymazal, J., Dong, R., Development of Constructed Wetlands in Performance Intensification for Wastewater Treatment: A Nitrogen and Organic Matter Targeted Review. Water Research, 57(2014), 40–55.
  • 21. Wu, H., Zhang, J., Huu, H. Ngo., Wenshan, G., Hu, Z., Liang, S., Fan, J., Liu, H., 2015. A Review on the Sustainability of Constructed Wetlands for Wastewater Treatment: Design and Operation. Bioresource Technology, 175(2015), 594–601.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3709065-2b5c-4e77-b634-3d52f1925d0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.