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1. Introduction 

To carry out system time-dependence analyses, one 

should be able to describe the states and the transitions 

of the system. When system analysts are more 

interested in describing system‟s failure/success, they 

will naturally be oriented to the use of the fault tree / 

reliability block type of analysis. They will certainly 

make use of the Boolean techniques and produce cuts 

(minimal or not) describing the system failure/success. 

I would call that Boolean Based Models (BBM). For a 

dynamic analysis needs based on fault tree analysis, 

analysts may use some dynamic fault tree analysis or 

dynamic reliability block diagram. This is the case of 

some models / algorithms given in [2], [5]. A complete 

work on the Boolean Techniques in Reliability Theory 

is given in [6]. The BBMs provide a complete 

description of all system failure/success combinatory 

cuts.  

On the other hand, if the Analyst wants to analyze 

system transitions, he will be oriented à priori towards 

the use of State Based Models (SBM) such as Markov, 

semi-Markov, or the use of Simulation Based 

Techniques (SBT) such as Monte-Carlo, Petri-

networks, Stochastic Petri Networks, SBMs provide a 

complete description of the system possible states 

including critical states and transitions. This is 

necessary in order to proceed to dynamic analysis.  

Models and algorithms that link between BBM and 

SMB are lacking. However, we may find some 

preliminary and promising works in [3], [1] but not 

exclusively.  

The paper presents some original ideas towards 

establishing formal links between these BBMs and 

SBMs. It is a partial answer on the following question: 

Does a Boolean expression of a system failure/success 

contain information about the system critical states and 

transitions? 

If yes, how can it be extracted? 

Critical states are, by definition, those states where 

only one elementary transition (off on) may result 

in a system transition (off on). Elementary 

transitions are associated to the elementary 

components of the system. Elementary transitions are, 

by definition, binary (off/on) and independent. That 

implies we have enough feedback experience about 

these “elementary components” such that we may fully 

describe them by a failure rate (), a repair rate () and 

an initial unavailability (). Many experts use the term 

“failure to start up probability” for , as well. 

 

2. System description 

A system‟s failure may be fully described by a logical 

expression of the following type: 

 

   F  = 1E + 2E + … + 1nE + nE       (1) 
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Where, F  is the set of all failure states and 

[ niEi ,...,2,1,  ] are given subsets of failure states. 

These subsets may be minimal cuts or not, joint or 

disjoint. They could also be any different kind of sets. 

They may be directly deduced from a Fault Tree 

representation of the system failure.  

Many logical expressions could equivalently describe 

the system failure F .  

The knowledge of the elementary states 

(failure/success) [ kiei ,...,2,1,  ] allows the 

construction of the failure subsets [ niEi ,...,2,1,  ], 

which describe the system failure F . Elementary states 

are, by definition, described by binary functions 

(0/1=off/on) and defined by transition rates 

(out/in
ii ee 

 /
ii ee 

 ). If ie  is defined as an 

elementary failure state, then, the failure rate will be 

defined as the transition rate to state ie  ( =
ii ee 

 ), 

the repair rate will be defined as the transition rate 

from state ie  ( =
ii ee 

 ) and ie  will be defined as 

the complementary state of ie  (the success state), see 

Figure 1. 

 

 

in out 





ie  
ie  

 
Figure 1. An elementary ie  state defined by its 

elementary transition rates into/out of its 

complementary state 

 

The state F  may also be fully described by its 

transition rates into/out of the complementary state F  

(
FF

 /
FF

 ). If the F  describes the system‟s 

failure, then, the system (equivalent) failure rate will 

be defined as ( =
FF

 ) and its (equivalent) repair 

rate will be defined as (  =
FF

 ). Subsequently, the 

system itself becomes binary and could be considered 

as merely an elementary state belonging to another 

more complicated (macro) system. This point of view 

is somehow close to the “Modular Approach” of Gulati 

in [5] and others. The system‟s kinetic could then be 

schematically described as in Figure 1 after replacing 

ie  by F and ie  by F . 

Consequently, the system time-behaviour will be fully 

governed by the following differential-integral 

equations system 

 

   )(tA
dt

d
 = )().( tAt  + )().( tUt ,    (2-a) 
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   ),( tS  = 




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
t

t
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e

).(

.    (2-c) 

 

Where, U is the system‟s probability to be in the given 

state F  (set of failure states) and A is the probability 

to be in the complementary (macro) state F  (success) 

at a given instant „t‟. R is the probability to last in the 

state F  for the time interval  tt,  and S is the 

probability to last in the complementary state F  for 

the time interval  tt, .  /  are the (equivalent) 

transition rates into/out of the failure state F , 

respectively. 

A, U, R, S,   and   could, then, be the availability, 

the unavailability, the reliability, the reparability, the 

failure rate and the repair rate of the system, 

respectively. 

Generally, the problem is how to determine the system 

transition rates ( , ), knowing the elementary states 

[ kiei ,...,2,1,  ] and the definition of the system 

failures [ niEi ,...,2,1,  ] given in equation (1). 

Currently, the solution subsists very often in 

constructing a graph of states and hopping that: 

 

 The number of states involved in the problem is 

limited, 

 The transition rates between these states are 

constant (Markovian) or at least slowly varying with 

the time (semi-Markovian).  

 

Generally, reliability engineers and analysts succeed to 

find out handsome algorithms to come up with 

satisfactory numerical answers.  

However, formal links between the logical expression 

of a set of states and the corresponding transition rates 

(in/out) are lacking. 

The link between the logical description of the system 

failure, [ niEi ,...,2,1,  ] given in equation (1), and 

the system transition rates given in equations (2), may 

only be established through the determination of the 

corresponding critical states. 
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3. Critical states 

The transition of a system, from success ( F ) to failure 

( F ) or vice-versa, occurs through some given and 

well-defined critical states. The determination of these 

critical states permits the determination of the failure 

and repair rates of the system, Figure (2). 

A critical state is a state in which the system may 

switch on (/off) by switching only one elementary state 

on (/off). Then, we have as many sets of critical states 

as elementary events. 

 

 

S F 




 

Figure 2. Schematic representation of critical 

transitions between the space S and F (S=Success, 

F=Failure) 

 

In the paper, a method is given in order to determine 

the critical states starting from the logical description 

of the failure (/success) of a given system. The 

demonstration of the method is not given in the paper 

and will be published independently.  

Let, [ kiei ,...,2,1,  ] be the elementary failure events 

related to a given system. An elementary event has 

only two states (off/on) and the transitions between 

these binary states are full determined by [( i , i ), 

ki ,...,2,1 ] which are statistically measured.  

If the system failure ( F ) is described by a logical 

expression as given in equation (1), the Modulus iM  

of the critical states associated to the elementary event 

( ie ) is determined by the intersection of two subsets 

 

   iM  = ii YX  .      (3) 

 

Where iX  and iY  are determined, respectively, by 

identification, using the following logical expression 

   ieF   = ii eX  ,    (4-a) 

 

   ieF   = ii eY  .    (4-b) 

 

The method shows that the set of critical failure states 

)( ieE , will be given by 

 

   )( ieE  = ii Me  .    (5-a) 

 

And the critical repair states )( ieE , will be given by 

 

   )( ieE  = ii Me  .    (5-b) 

 

Once the sets of critical events (failure/repair) have 

been determined for the given system, we can then 

write: 

 

    ss A.  =  


k

i

ii eEP
1

)(.     (6-a) 

 

and 

 

   ss U.  =  


k

i

ii eEP
1

)(. .    (6-a) 

 

Where sA  and sU  are the system availability and 

unavailability, i  and i  are the transitions rates of 

the elementary event (i), while  )( ieEP  and  )( ieEP  

are the probability of being in the set of critical repair 

states and in the set of critical failure states, 

respectively. 

Because of the binary aspect of the method, the system 

is either available (in operation) unavailable (in 

reparation). The equivalence “Availability = 

Operation” and “Unavailability = Reparation” may be 

at disturbing, at the first glance, and giving the 

impression of something missing regarding 

engineering systems real life. That may result in 

confusion in some situations.  

One of these potentially confusing situations can be the 

one when the system is in a standby phase. In this case, 

the system is available but not in operation. It is not 

operating but not in reparation, neither.  

However, this still could be treated by distinguishing 

different phases in real operating life of a given 

system. In a passive standby phase, when a given 

system does not fail and is not in reparation, the system 

may still be defined in this phase by its failure and 

repair rates such that 
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   s = s  = 0 

 

Where, the logical description of the critical states will 

still be valid. 

Our main objective is rather to apply the method than 

to demonstrate it. We have chosen an application case 

whose results could be obtained by other methods 

(graph state). That would allow better appreciating the 

original added value of the method and its real 

potentials for complex system analysis.  

Before leaving this section, it is worth to underline that 

the method to determine the critical states is 

independent on the logical expression used to describe 

the system. Analysts may indifferently use the logical 

expression of success as well as the logical expression 

of failure. 

An active redundancy of the type (N-1)/N has been 

selected. A specific attention is paid to the system 

time-dependency analysis.  

 

4. (N-1)/N active redundancy 

In the following sections, we will be interested in 

making a study case in order to illustrate some time-

dependant characteristics in a relatively complex 

system.  

We propose an (N-1)/N active redundancy type of 

systems.  

The generalization of the method to other types of 

complex systems is straightforward. As it has been 

mentioned above, the most original part in the method 

is the one about the determination of the set of critical 

states per each elementary failure event, using the 

formal mathematical tools of the Boolean algebra. 

 

4.1. System state logical expression 

Both systems‟ Failure ( F ) and system success ( S ) 

can be equally described. F  and S  are 

complementary sets in the Boolean sense. 

This is true as long as F  and S  hold for the following 

properties 

 

   SF   =  ,  

 

   SF   = I  

 

Where “ ” and “ ” are the logical operators 

intersection and union, respectively.   and I  are the 

empty and universal sets, respectively. 

We will use the system success expression S . The 

success of a system in a configuration of (n-1)/n active 

redundancy may be expressed by 

 

   S = [ nn eeeeee  15432 ... ]  

  

       + [ nn eeeeee  15431 ... ]  

  

       + [ nn eeeeee  15421 ... ]  

  

       + [ nn eeeeee  15321 ... ]  

  

       :::::::::::::::::::::::::::::::::::::::::::::::::::: 

  

       + [ neeeeee  ...54321 ]  

  

       + [ 154321 ...  neeeeee ].       (7) 

 

Where ie  is an elementary event describing the 

success of the elementary component belonging to the 

system. Elementary events are independent, by 

definition.  

The system‟s success is logically described in equation 

(7) using the success minimal cuts. Instead, we prefer 

to put it in the form of disjoint cut sets, regarding our 

immediate need to calculate the system availability 

„A‟. To carry out the transformation of the minimal 

(joint) cuts to disjoint (but not minimal) cuts, we may 

proceed in the following way. Using a reduced 

expression of the system success, equation (7) may be 

written as 

 

   S = 1E + 2E + 3E + …+ 1nE + nE .       (8) 

 

Where { iE , i=1,2, … , n} are any type of cut sets. In 

order to construct an expression of the system success 

using disjoint cut sets, one may then rearrange the 

above expression in the following manner 

 

   S = 1E + 21 EE  + 321 EEE  + …  

  

       +



















2

1

n

j

jE 1 nE +



















1

1

n

j

jE nE .       (9) 

 

(For full description on Boolean expressions and 

function handling see [2]) 

Expressions (8) and (9) are equivalent. Moreover, there 

exists n! equivalent possible expressions. 

The expressing in Equation (7) could, then, be written 

as following: 

   S = [ nn eeeeee  15432 ...
]  

  

       + [ nn eeeeeee  154321 ...
]   
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       + [ nn eeeeeee  154321 ...
]   

 

       + [ nn eeeeeee  154321 ...
]   

 

          :::::::::::::::::::::::::::::::::::::::::::::::::::: 

  

       + [ nn eeeeeee  154321 ...
]  

  

       + [ nn eeeeeee  154321 ...
].      (10) 

 

That allows immediately describing the system 

availability sA  by 

 

   sA  = [  








 



















1

1

1

1 1

.
n

i

n

l

n

lj
j

jli AUA ].     (11) 

 

Where iA  and iU  are the availability and the 

unavailability of the elementary components, 

respectively. They obey the differential equation 

system given in (2). If all elementary events are 

identical (same transition rates and initial condition), 

one may replace iA  and iU  by A  and U . Equation 

(11) will become 

 

   sA =  UnAn ).1(11 
.     (12) 

 

4.2. Critical states 

Our objective now is to determine the n sets of critical 

states corresponding to the n elementary events. These 

sets are necessary to determine the system transition 

rates. Following the proposed method, lets determine 

the critical set corresponding to the elementary event 

1e , as following 

 

   1eS   = [ nn eeeeeee  154321 ... ]   

 

  + [ nn eeeeeee  154321 ... ]  

  

  + [ nn eeeeeee  154321 ... ]  

  

  + [ nn eeeeeee  154321 ... ]   

 

  ::::::::::::::::::::::::::::::::::::::::::::::::::::  

  + [ nn eeeeeee  154321 ... ]   

 

  + [ nn eeeeeee  154321 ... ]    

 

   1eS  = 1e  {[ nn eeeeee  15432 ... ]  

  

  + [ nn eeeeee  15432 ... ]  

  

  + [ nn eeeeee  15432 ... ]  

  

  + [ nn eeeeee  15432 ... ]   

 

  ::::::::::::::::::::::::::::::::::::::::::::::::::::  

 

  + [ nn eeeeee  15432 ... ]   

 

  + [ nn eeeeee  15432 ... ]}   

 

  = 11 Xe  . 

 

By identification, 1X  can be defined as 

 

   1X = [ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ]  

  

          :::::::::::::::::::::::::::::::::::::::::::::::::::: 

  

         + [ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ].      (13) 

 

Secondly, one should calculate the modulus relative to 

the event 1e  as following: 

 

   1eS  = 1e {[ nn eeeeee  15432 ... ]   

 

   + [ nn eeeeeee  154321 ... ]  

  

   + [ nn eeeeeee  154321 ... ]   

 

   + [ nn eeeeeee  154321 ... ]   
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       ::::::::::::::::::::::::::::::::::::::::::::::::::::  

 

   + [ nn eeeeeee  154321 ... ]  

  

   + [ nn eeeeeee  154321 ... ]} 

 

   =  nnn eeeeeeee   1254321 ...  

 

   = 11 Ye  . 

 

By identification, 1Y  may be defined as 

 

   1Y =  nnn eeeeeee   125432 ... .     (14) 

 

The modulus 1M  of the critical sets corresponding to 

the elementary event 1e  is then 

 

   1M = 11 YX    

 

         = {[ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ]   

 

         + [ nn eeeeee  15432 ... ]   

 

         + [ nn eeeeee  15432 ... ]  

  

            :::::::::::::::::::::::::::::::::::::::::::::::::::: 

  

         + [ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ]}  

 

          nnn eeeeeee   125432 ... .  

 

Finally, 

 

   1M = [ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ]  

  

           :::::::::::::::::::::::::::::::::::::::::::::::::::: 

  

         + [ nn eeeeee  15432 ... ]  

  

         + [ nn eeeeee  15432 ... ].     (15) 

 

1M  is the modulus of the set of the critical states 

associated to elementary event 1e . One should repeat 

the same procedure (equations 13,14,15) to obtain the 

other modulus  niMi ,...,3,2,   associated to all 

other elementary events  niei ,...,3,2,  .  

 

4.3. System transition rate 

According to equation (5-a), the set of the critical 

failure states associated to the elementary event ( 1e ) is 

then 

 

   )( 1eE  = 11 Me       (16) 

 

And the probability of this set of events is equal to 

 

    )( 1eEP  =  11 MeP   =  1eP  1. MP      (17) 

 

As, the elementary events were supposed all identical 

(transition rates and initial condition), thus  

 

    )( 1eEP  =  2.).1(.  nAUnA .     (18) 

 

So, we can determine the second term in equation (6-

a): 

 

    


k

i

ii eEP
1

)(.  =  


k

i

ii eEP
1

)(.   

  

                =  1.).1(.  nAUnn .               (19) 

 

Considering equations (6-a), (10) and (17), we may 

determine the overall failure rate of the system as 

following 

 

   ss A. =  UnAn
s ).1(1. 1   

  

  =  1.).1(.  nAUnn . 

 

That gives  

 

   s = 
 











Un

Unn

)1(1

).1(
. .       (20)  
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Where   is the failure rate of the elementary 

component, and U  is its unavailability. U  obeys 

equation (2-a) whose solution gives (for constant 

transition rates) 

 

   U =   tt ee )()(1  


  


     (21) 

 

Where,  ,  and   are a constant failure rate, a 

constant repair rate and an initial condition 

( )0(U ). 

Considering equations (21) and (20) leads to the 

conclusion that: “Although the elementary failure rates 

 ‟s do not depend on time, the overall system failure 

rate s  shows time dependency.”  

Secondly, the system overall failure rate s  depends 

not only on the elementary failure rates  , but also on 

the elementary repair rates  , via the unavailability 

U , as well as the initial conditions via the failure to 

start-up probabilities  . 

The same procedure can also be used to determine a 

system overall repair rate. The demarche is identical 

and straightforward starting from equation (16) after 

having replaced the critical failure states by the critical 

repair states associated to the elementary events ( ie ). 

An exhaustive analysis of the method is out of the 

scope of this paper. The author limits the presentation 

to the use of the system overall failure rate and the 

system overall unavailability in order to demonstrate 

some interesting aspects related to the system time-

dependency.  

We may conceive a wide range of indicators that 

should allow us judging and assessing the 

attractiveness of a given (n-1)/n redundancy. We will 

introduce only two indicators and examine with some 

details their time behaviour. 

 

5. Redundancy benefits 

Different measures of benefits can be conceived in 

order to assess the real interest of a given redundancy.  

If there were no redundancy, the system could have 

been composed of only (n-1) identical elementary 

items. These elementary items will be connected by an 

OR gate. That means that without this type of 

redundancy, the system‟s availability ( sA ) and failure 

rate ( s ) would have been, respectively, equal to 

 

   osA , = 
1nA ,     (22) 

 

   os, = ).1( n .     (23) 

Where A  and   are those of the elementary failure 

events. The elementary failure rate   may have any 

time-dependant form. 

Equations (22) and (23) provide us with reference 

values for the system availability and the system 

overall failure rate. 

Thus, we may conceive some indicators to allow 

assessing the attractiveness of a given redundancy. We 

will limit our analysis in this paper to two indicators: 

 

 Availability Gain indicator, and 

 Failure Reduction Factor indicator 

 

One recalls that our main objective is not to develop 

indicators measuring the interest of a redundancy but 

to assess the inter-dependency of these indicators and 

their time-dependency.  

 

5.1. Availability gain 

One way to evaluate the interest of using a given [(n-

1)/n] active redundancy may be to calculate the 

absolute gain increase (G) in system availability, such 

as 

 

    G(t) = )(, tA ws  - )(, tA os .     (24) 

 

Where )(, tA ws  and )(, tA os  are the system availability 

with and without the [(n-1)/n] redundancy. Substituting 

equations (12) and (22) in equation (24), we get 

 

   G(t) =  UnAn ).1(11 
 - 

1nA  

  

           = )().().1( 1 tAtUn n .     (25) 

 

Figure 3 illustrates how this gain in system availability 

varies with the elementary component unavailability 

and with the degree of the redundancy of the system.  

Many interesting aspects deserve to be underlined. 

First of all, it is worthy observing that the gain factor 

(G) is always positive and becomes null if and only if 

the elementary unavailability is null or equal to unity: 

 

   

1
0

lim




U
U

G(t) = 

1
0

lim




U
U

)().().1( 1 tAtUn n   0     (26) 

    

Thus, it is not possible to loose in system availability if 

one uses an active redundancy with independent 

elementary events. Active redundancy is useless (G=0) 

if the elementary unavailability is null or if it is equal 

to unity. 
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Figure 3. Increase in system overall availability versus 

elementary component unavailability 

 

The second remark is that the absolute gain in system 

availability depends on the elementary unavailability. 

This dependency has maximum values. Higher is the 

order of the redundancy, higher is the maximum gain 

in system availability. In the case of a 1/2 active 

redundancy, the system attends its maximum gain 

(0.25) when the elementary unavailability is around 

0.50. While, at 19/20 redundancy, the maximum gain 

(0.36) is obtained at 0.05 elementary unavailability.  

Third, systems with highly probable elementary 

failures (> 0.5) would show higher gain factor if they 

have lower order active redundancy. The gain factor is 

0.25 in the case of 1/2 redundancy and 0.06 in the case 

of 5/6 redundancies, both at elementary failure 

probability as high as 0.52. 

While the systems, with very low elementary 

unavailability, would show higher gain factor at higher 

order of redundancy. For an elementary unavailability 

of the order of 0.01, 19/20 active redundancies shows a 

gain of the order of 0.16 while 1/2 redundancy shows a 

gain of only 0.01.  

Forth, the active redundancy looses interest at extreme 

values of elementary unavailability ( 0U , and 

1U ). This could be the case of industrial systems 

containing components whose failure rates are very 

small while repair rates are high. That results in very 

low elementary-failure probabilities. Or, that could 

also the case of industrial systems with components 

having very high failure rates and very small repair 

rates. That would result in very high elementary-failure 

probabilities. 

Finally, it is important to underline that whatever the 

exact values of failure and repair rates of elementary 

components in a given systems, the elementary-failure 

(/elementary-success) probabilities evolve in time with 

accordance to equations (2). That means that the gain 

in availability evolves with the time, for a given 

system.  

 

5.2. System failure rate reduction factor 

Another type of analyses can also be carried on based 

on the notion of the gain in reliability. 

How much does one gain in reliability using an [(n-

1)/n] redundancy, with independent components?  

One way to answer is to consider that one gains in 

reliability as much as one decreases the elementary-

failure rate? That is certainly correct even if the 

correspondence is not directly proportional. 

We may define a failure rate reduction factor ( f ) as 

follows 

 

   f =




)1( n

s = 
 Un

nU

)1(1 
.                             (27) 

 

Where s  and  )1( n  are the system failure rates 

with and without the redundancy, respectively. 

Figure 4 illustrates the variation of the reduction factor 

( f ) as a function of the elementary unavailability and 

the degree of the system redundancy. Many aspects 

may be underlined. 

At very high order of redundancy, the reduction factor 

is almost equal to 1, which is not attractive in terms of 

gain in reliability: 

 

    nf = 
n

lim  
 Un

nU

)1(1 
   1     (28) 

 

The best reduction factor ( f = 0) can only be obtained 

for systems containing perfectly available elementary 

components [U =0,  ),...3,2(;  nn ], independently 

from the degree of redundancy. It means that 

redundancy degree does not impact on the system 

failure (reliability). Practically, if elementary 

components are always available, then no-need to use 

redundancy.  
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Figure 4. Failure rate reduction facture versus 

elementary unavailability  
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One may thus describe ( f = 0) as the strongest 

reduction factor and ( f = 1) as the weakest reduction 

factor. 

One observes also that for the same level of elementary 

unavailability, Figure 3, one has stronger reduction 

factor at lower redundancy. It is very important to 

underline this aspect that higher is the redundancy 

degree lower is the reduction factor, independently of 

the elementary unavailability. 

 

6. System ageing  

Examining equation (20) results in the conclusion that 

the system overall failure rate is time-dependent even 

if the elementary-failure rates are not. This is mainly 

due to the fact that the system overall failure rate 

depends on the elementary unavailability (U ), as well. 

We know that U  obeys the differential equation (2) 

and subsequently, is dependent on time. We may recall 

that 

 the system is ageing if, s
dt

d
  > 0,  

 the system is time-independent if, s
dt

d
  = 0, 

 the system is regenerating if  s
dt

d
  < 0. 

 

One should understand this (systemic) behaviour in its 

functional sense.  

To illustrate this effect, we recall equation (18) 

 

   s = 
 











Un

Unn

)1(1

).1(
. . 

 

And consider the case where a given system composed 

of [(n-1)/n] identical time-independent components. 

Let the elementary unavailability )(tU varies in such a 

way that 

 

   )0(U = 0,  

 

and 

  

   )( tU    1. 

 

That gives the following results: 

 

   
0t
s = 0, 

 

and  

 

   
t
s   )1( n       (29) 

 

Under the above hypothesis, the system behaves as if 

its failure rate evolves from zero to  )1( n , while 

  is time-independent. What is even more interesting, 

is that 
t
s  is proportional to n , when n  is relatively 

high. That is to say, highly redundant systems age 

faster.  

That would equally means that, in practice and in a 

given complex system, if elementary components do 

not show ageing, it is not enough to conclude that the 

system itself does not age. 

Complex systems should be analysed and observed 

through functional specifications not only physical 

ones.  

One more interesting case could be for a system with 

[(n-1)/n] actively redundant elementary non-reparable 

components with Weibull-type elementary failure rate. 

In that case, the elementary unavailability U  and 

failure rate   will be given by 

 

   U = 1 - 



 









t

e ,  

 

    = 

1













 t
. 

 

Substituting in equation (18), the system overall failure 

rate will then be equal to 

 

   )(ts = 
 











Un

Unn

)1(1

).1(
.   

  

           = 

1













 t









































)1)(1(1

)1).(1(








t

t

en

enn
     (30) 

    

Equation (30) shows the time dependency of the 

system overall failure rate in the case of non-reparable 

elementary element with Weibull-like failure rate. 

Again, we observe that redundancy slow efficiently the 

system aging for small „t‟ and small „n‟. However, it 

looses its efficiency when „n‟ and „t‟ increases.  
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5.3. Maintenance and ageing  

We have examined the impact of the elementary-

failure rate ( ) and the degree of redundancy ( n ) on 

the system failure ( s ) time-dependency. 

In this section, the impact of the elementary-failure 

probability (U ) will be examined. U  obeys the 

differential equations given in (2) 

 

   A
dt

d
 = A.  + U. . 

 

If   (elementary failure rate) and   (elementary 

repair rate) are time-independent, then 

 

   )(tU = )1( )( te 



 


+
te )(.  
, 

 

where 

 

   
0

)(
t

tU     , 

 

   
t

tU )(    





.                                                (31) 

    

Accordingly and considering equation (20), one may 

identify three possible situations 

 

   < 





, 

 

which means that )(tU  increases with time and 

s  increases with time, as well. Subsequently the 

system ages.  

 

     





, 

 

which means that )(tU  is constant with time and 

subsequently the system is time-independent. 

Subsequently, s  is constant 

 

   > 





,  

 

which means that )(tU  decreases with time and s  

decreases with time. Subsequently the system 

generates. 

There are different ways to read the above three 

situations from maintenance point of view, under the 

light of equation (20).  

The 1
st
 situation reflects the case where  

 

   (






 


1
),  

 

i.e. the elementary components are under-maintained 

or non-reparable. The elementary-repair rates are small 

compared to the elementary-failure rates. Improvement 

in maintenance would slowdown the system ageing. 

The 2
nd

 situation reflects the case where  

 

   (






 


1
),  

 

i.e. the elementary components are enough maintained. 

The elementary-repair rate is proportional to the 

elementary-success probability at 0t . That is to say, 

regarding the elementary component, more 

successfully it starts up lower the maintenance it 

receives, and vice-versa. In all cases, maintenance is 

efficient enough to rend the system time-independent.  

The 3
rd

 situation reflects the case where  

 

   (






 


1
), 

 

 i.e. the elementary components are over-maintained. 

The elementary-repair rate is either too high compared 

to the elementary failure rate or one maintains a 

component that never shows failure ( 0 ). We 

have a good maintenance margin.  

In these three situations, we are guided by equation 

(20) that describes the system overall failure rate. In 

the all situations we considered the elementary failure 

rate as intrinsic to the elementary components and used 

the maintenance ( ) as a means to improve 

elementary component unavailability and consequently 

the system overall failure rate. Increasing (  ) 

obviously improves system reliability.  

One may also reproduce the same effect on the system 

overall failure rate through decreasing the elementary 

failure rate ( ). As the elementary failure rate is an 

intrinsic property of the elementary component, so the 

only way to decrease it is to replace periodically the 

elementary component by a new one. 

This is exactly what operators do in order to improve 

the reliability of their complex systems. They elaborate 

their maintenance strategy upon 2 basic actions. 
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Improving elementary component‟s reparability, which 

is translated by increasing the elementary component 

repair rate ( ) through periodic maintenance, and/or 

Improving elementary component‟s failure, which is 

translated by decreasing the elementary component 

failure rate ( ) through regular standard replacement 

of the elementary component(s). 

 

6. Conclusion  

In spite of the obvious progress in the system 

reliability theory during the past decades, some open 

questions do still need development. One of these open 

questions concerns the determination of complex 

systems critical states and transitions.  

Very often, analysts and reliability engineers use 

graphical tools when they are interested in analysing 

system states and transitions. Once the graph of states 

in constructed and the critical transitions are identified, 

they use Markovian (/semi-Markovian) tool to carry 

out the assessment.  

However, they will react differently, if they would like 

to analyse system failure modes and events taking into 

account interdependencies between different sets of 

elementary components failures. They will rather use 

fault tree analyses and associated Boolean tools. 

Our question was: 

“Do Boolean expressions of system failure contain any 

information about systems critical states and 

transitions?” If yes, “How can it be extracted?”  

The author reports on a small but promising progress 

towards an answer. The author believes that 

establishing a link between states graph-type of 

presentations and Boolean failure cut sets would open 

a promising prospective in the system reliability 

theory, especially, dynamic reliability.  

A very rapid presentation of the method has been done. 

An application on [(n-1)/n] active-redundancy system 

is carried out in order to allow the appreciation of the 

method. 

The author has stressed on the behaviour of the system 

overall failure rate with the time.  
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