Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The reflection of elastic waves at the surface of a couple-stress elastic half-space with a viscoelastic support is studied in this paper. Different from the classical elastic solid, there are: a non-dispersive dilatational propagating wave, a dispersive transverse propagating wave and a dispersive evanescent wave in a couple-stress elastic solid. The boundary conditions at the visco-elastically supported surface of a couple-stress elastic half-space include the couple-stress vector and the rotation vector, which disappear in the classical elastic solid. They are used to obtain a set of linear algebraic equation, from which the amplitude ratios of reflection waves with respect to the incident wave can be determined. Then, the reflection coefficients in terms of energy flux ratios are calculated numerically, and the normal energy flux conservation is used to validate the numerical results. At last, the influence of the boundary parameters that reflect the mechanical behavior of a viscoelastic support on the amplitude ratio, the phase shift and the energy partition of reflection waves are discussed based on the numerical results. Both the incident longitudinal displacement wave (the P-wave) and incident transverse displacement wave (the SV-wave) are considered. It is found that the instantaneous elasticity and the delayed viscosity of a viscoelastic support have different influences on the reflection waves.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
131--156
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Department of Applied Mechanics University of Science and Technology Beijing Beijing 100083, China
autor
- Department of Applied Mechanics University of Science and Technology Beijing Beijing 100083, China
autor
- Department of Applied Mechanics University of Science and Technology Beijing Beijing 100083, China
autor
- Department of Mathematics Qiqihar University Qiqihar 161006, China
Bibliografia
- 1. A.W. Mcfarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics & Microengineering, 15, 5, 1060–1067, 2005.
- 2. R.A. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 1, 385–414, 1962.
- 3. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 1, 415–448, 1962.
- 4. A.C. Eringen, Mechanics of Micromorphic Materials, Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany), Springer, Berlin, 1966.
- 5. A.C. Eringen Linear theory of micropolar elasticity, Journal of Mathematics & Mechanics, 15, 909–924, 1966.
- 6. A.C. Eringen, Theory of thermo-microstretch elastic solids, International Journal of Engineering Science, 28, 12, 1291–1301, 1990.
- 7. A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2001.
- 8. W.T. Koiter, Couple-stresses in the theory of elasticity: I and II, Nederlandse Akademie van Wetenschappen Proceedings Serie B, 67, 17–44, 1964.
- 9. K.F. Graff, Y.H. Pao, The effects of couple-stresses on the propagation and reflection of the plane waves in an elastic half-space, Journal of Sound and Vibration, 6, 2, 217–229, 1967.
- 10. H.R. Aggarwal, R.C. Alverson, The effect of couple-stresses on the diffraction of plane elastic waves by cylindrical discontinuities, International Journal of Solids and Structures, 5, 5, 491–511, 1969.
- 11. N.S. Ottosen, M. Ristinmaa, C. Ljung, Rayleigh waves obtained by the indeterminate couple-stress theory, European Journal of Mechanics – A/Solids, 19, 6, 929–947, 2000.
- 12. H.G. Georgiadis, E.G. Velgaki, High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects, International Journal of Solids and Structures, 40, 10, 2501–2520, 2003.
- 13. G. Mishuris, A. Piccolroaz, E. Radi, Steady-state propagation of a Mode III crack in couple stress elastic materials, International Journal of Engineering Science, 61, 112–128, 2012.
- 14. P.A. Gourgiotis, A. Piccolroaz, Steady-state propagation of a Mode II crack in couple stress elasticity, International Journal of Fracture, 188, 2, 119–145, 2014.
- 15. R. Kumar, K. Kumar, R. Nautiyal, Propagation of SH-waves in couple stress elastic half space underlying an elastic layer, Afrika Matematika, 24, 4, 477–485, 2013.
- 16. P.A. Gourgiotis, H.G. Georgiadis, I. Neocleous, On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity, Wave Motion, 50, 3, 437–455, 2013.
- 17. P.A. Gourgiotis, H.G. Georgiadis, Torsional and SH surface waves in an isotropic and homogenous elastic half-space characterized by the Toupin–Mindlin gradient theory, International Journal of Solids and Structures, 62, 217–228, 2015.
- 18. P. Zhang, P.J. Wei, Q.H. Tang, Reflection of micropolar elastic waves at the non-free surface of a micropolar elastic half-space, Acta Mechanica, 226, 9, 2925–2937, 2015.
- 19. P. Zhang, P.J. Wei, Y.Q. Li, Reflection of longitudinal displacement wave at the viscoelastically supported boundary of micropolar half-space, Meccanica, 52, 7, 1641–1654, 2017.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a361414b-7a85-41e0-8289-067b468fe0bd