PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of bonding layer quality in repair process of aircraft composite structure after impact damage

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza jakości warstwy wiążącej podczas procesu naprawy struktury konstrukcji kompozytowej samolotu po uszkodzeniu udarowym
Języki publikacji
EN
Abstrakty
EN
Aircraft composite structures made in autoclave prepreg technology are characterized by low porosity and high strength. Unfortunately, composite structures are susceptible to impact damage. Therefore in order to repair this type of structures, an advantageous method of structure restoration is the use of the two-step bonding method. This method relies on creating a composite patch cured in an autoclave and then bonding it into a previously prepared repair area in the repaired structure, created by removing the damaged layers. Thanks to this approach, the patch is produced in accordance with the production process of the repaired element and has similar properties including low porosity. A critical element of repair is the bonding layer between the patch and repaired structure. Difficulties in obtaining an appropriate consolidation pressure (compression) using a vacuum bag can cause local disbonding of the composite patch as well as porosity in the bonding layer. Porosity reduces the strength properties of the joint, and it also reduces its weather resistance, which may contribute to its gradual degradation. The article focuses on analysis of the influence of compression obtained by a vacuum bag on the porosity and thickness of the bonding layer. A professional line for the production of aircraft composites and a mobile system for composite repairs of aircraft structures were used to produce the samples. The computed tomography method was used to measure the porosity and thickness of the bonding layer.
Rocznik
Strony
134--141
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Airworthiness Division, Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warszawa, Poland
  • Airworthiness Division, Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warszawa, Poland
  • Airworthiness Division, Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warszawa, Poland
  • Łukasiewicz Research Network – Institute of Aviation, al. Krakowska 110/114, 02-256 Warszawa, Poland
Bibliografia
  • [1] Advanced Composite Structures : Fabrication and Damage, Repair, Teaching Materials, Abaris Training Resources. Reno NV, 2010.
  • [2] Szymański R., Non-destructive testing of the thermoplastic carbon composite structures, Research 2020, 1(258), 34-52, DOI: 10.2478/tar-2020-0003.
  • [3] Bona A., Theoretical and experimental review of applied mechanical tests for carbon composites with thermoplastic polymer matrix, Transactions on Aerospace Research 4(257), 55-65, DOI: 10.2478/tar-2019-002.
  • [4] Bajurko P., Wyznaczanie otworu ekwiwalentnego dla uszkodzeń poudarowych na podstawie badań wytrzymałości resztkowej (Determination of open hole equivalent to after impact damage based on residual strength tests),Prace Instytutu Lotnictwa 2016, 3(244), 20-27, DOI: 10.5604/05096669.1222731.
  • [5] Bobrowska M., Barcikowski M. Ocena uszkodzeń udarowych rur kompozytowych wykonanych metodą nawijania i zaprojektowanych według metody tablicowej (Assesment of impact damage to composite pipes made with the winding method and designed according to the table method), Prace Instytutu Lotnictwa 2016 3(244), 26-40, DOI: 10.5604/05096669.1222734.
  • [6] Fawcett A.J., Oakes G.D., Boeing composite airframe damage tolerance and service experience, Boeing Commercial Airplanes, downloaded from the portal https://www.wichita.edu/.
  • [7] Leski A., Analiza wytrzymałości łopaty śmigłowca uszkodzonej w wyniku przestrzelenia (Strength analysis of damaged helicopter blade as a result of overshot), PhD thesis, Military University of Technology, Warsaw 2000.
  • [8] Ancelotti J.A.C., Use of the marlin criteria to determine the influence of porosity on the Iosipescu and short beam shear properties in carbon fiber polymer matrix composites, Materials Research 2010, 13, DOI: 10.1590/S1516-14392010000100014.
  • [9] Ahn S.H., Springer G.S,. Repair of composite laminates, U.S. Department of Transportation Federal Aviation Administration, Washington 2000, http://tc.faa.gov/its/worldpac/techrpt/ar00-46.pdf.
  • [10] Budhe S., Banea M., de Barros S.S., An updated review of adhesively bonded joints in composite materials, International Journal of Adhesion and Adhesives 2017, 72, DOI: 10.1016/j.ijadhadh.2016.10.010.
  • [11] Ushakov A., Probabilistic design of damage tolerant composite aircraft structures, U.S. Department of Transportation Federal Aviation Administration, Washington 2002, http://www.tc.faa.gov/its/worldpac/techrpt/ar01-55.pdf.
  • [12] Dragan K., Klimaszewski S., Nowoczesne metody badań nieniszczących (Modern methods of non-destructive testing), [In:] J. Lewitowicz, Problemy eksploatacji statków powietrznych (Problems of aircraft maintenance), Vol. 6, ITWL, Warszawa 2006.
  • [13] Puchała K., The influence of selected local phenomena in CFRP laminate on global characteristics of bolted joints, Materials, MDPI AG, 2019, 12, 4139, DOI: 10.390/ma12244139.
  • [14] Kubiak T., Gliszczynski A.,Krygier M., Impact damage tolerance of laminate short columns subjected to uniform compression – experimental investigation, Composite Structures 2019, 226/111222, DOI: 10.1016/j.comstruct.2019.111222.
  • [15] Baker A.A., Rose L.R., Advances in the Bonded Composite Repair of Metallic Aircraft Structure, Elsevier Science Ltd., Amsterdam, Boston, London, New York 2002.
  • [16] Baker A.A., Jones R., Bonded repair of aircraft structures, Martinus Nijhoff Publisher, Dorrdrecht 1988.
  • [17] Zabłocka M., The effect of cure cycle time on the properties of epoxy-bonded joints, Fatigue of Aircraft Structures 2013, 151-167, DOI: 10.2478/v10164-012-0066-1.
  • [18] Aerospace and Aircraft Maintenance Department. Scotch-Weld Structural Adhesive Film AF 163-2, Technical Data-sheet 2009, www.3M.com/aerospace.
  • [19] Sałaciński M., Synaszko P., Olesiński D., Approach to evaluation of delamination on the MiG-29’s vertical stabilizers composite skin, [In:] A. Niepokólczycki, J. Komorowski, ICAF 2019 - Structural Integrity in the Age of Additive Manufacturing, Springer Link, Krakow 2020, 865-873, https://link.springer.com/chapter/10.1007/978-3-030-21503-3_69.
  • [20] Szymczyk E., Influence of metal foil on interface stress state in CFRP laminate, Solid State Phenomena 2016, 223-231, DOI: 10.4028/www.scientific.net/SSP.250.223.
  • [21] Antolovich S.D., Bathias C., Bayraktar E., New developments in non-destructive controls, Journal of Materials Processing Technology 2008, DOI: 10.1016/j.jmatprotec.2007.12.001.
  • [22] Spearing S.M., Three-dimensional assessment of low velocity impact damage in particle toughened composite laminates using micro-focus X-ray computed tomography and synchrotron radiation laminography, Composites Part A: Applied Science and Manufacturing 2013, DOI: 10.1016/j.compositesa.2013.05.003.
  • [23] Cygański A., Metody spektroskopowe w chemii analitycznej (Spectroscopic methods in analytical chemistry), Wydawnictwo Naukowe PWN Warszawa 1997.
  • [24] Vaara P., Leinonen J., Technology survey on NDT of carbon-fiber composites, Publications of Kemi-Tornio University of Applied Sciences 2012.
  • [25] Ratajczyk E., Tomografia komputerowa CT w zastosowaniach przemysłowych, Cz. II. Tomografy i ich parametry, przykłady zastosowań (CT computed tomography in industrial applications. Th. II. Tomographs and their parameters, examples of applications), Mechanik 2011, 84, 3, 226-228, http://www.mechanik.media.pl/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3594250-2009-4753-b464-d870b34615c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.