PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tunable Q-switched ytterbium-doped fibre laser by using zinc oxide as saturable absorber

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper demonstrates the use of a zinc oxide (ZnO) thin film in a 1-μm ring laser cavity as a saturable absorber to successfully generate Q-switching pulses. The tunability of the laser pulses is achieved by integrating a tunable bandpass filter (TBPF) in an ytterbium-doped laser cavity that results in 9.4 nm of tuning range, which wavelength is from 1040.70 nm to 1050.1 nm. The peak energy in the pulse which is 1.47 nJ was measured together with a minimum pulse width of 2.4 μm. In addition, the repetition rate increases from 25.77 to 45.94 kHz as the pump power level being increased from 103.1 to 175.1 mW. The results obtained in this experiment demonstrated consistent results and stable throughout the experiment. Therefore, ZnO thin film is considered as a good candidate in 1-µm pulsed laser applications.
Słowa kluczowe
Twórcy
  • Photonics Research Centre (PRC), University of Malaya, Kuala Lumpur, Malaysia
  • Photonics Research Centre (PRC), University of Malaya, Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre (PRC), University of Malaya, Kuala Lumpur, Malaysia
  • Photonics Research Centre (PRC), University of Malaya, Kuala Lumpur, Malaysia
autor
  • Photonics Research Centre (PRC), University of Malaya, Kuala Lumpur, Malaysia
  • Institute of Microengineering and Nanoelectronics, University Kebangsaan Malaysia, Selangor, Malaysia
autor
  • Photonics Research Centre (PRC), University of Malaya, Kuala Lumpur, Malaysia
Bibliografia
  • [1] W. J. Miniscalco, Erbium-doped glasses for fibre amplifiers at 1500 nm, J. Lightwave Technol. 9 (1991) 234-250.
  • [2] P. M. Becker, A. A. Olsson, J. R. Simpson, Erbium-Doped Fibre Amplifiers: Fundamentals and Technology, Academic Press, 1999.
  • [3] B. J. Ainslie, A review of the fabrication and properties of erbium-doped fibres for optical amplifiers, J. Lightwave Technol. 9 (1991) 220-227.
  • [4] V. Durairaj, Amplification in Ytterbium-Doped Fibres (thesis), 2013.
  • [5] Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, et al., 1.06 µm Q-switched ytterbium-doped fibre laser using few-layer topological insulator Bi2Se3 as a saturable absorber, Opt. Express 21 (2013) 29516-29522.
  • [6] R. Paschotta, J. Nilsson, A. C. Tropper, D. C. Hanna, Ytterbium-doped fibre amplifiers, IEEE J. Quant. Electron. 33 (1997) 1049-1056.
  • [7] P. J. Suni, D. C. Hanna, R. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, et al., Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibres, in: OE/FIBRES’89, 1990, pp. 244-260.
  • [8] G. Agrawal, Applications of Nonlinear Fibre Optics, Academic Press, 2010.
  • [9] G. Stegeman, D. Hagan, L. Torner, x (2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons, Opt. Quant. Electron. 28 (1996) 1691-1740.
  • [10] P. W. Smith, D. A. Miller, Y. Silberberg, Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities, JOSA B 2 (1985) 1228-1236.
  • [11] J. J. Zayhowski, Passively Q-switched Nd: YAG microchip lasers and applications, J. Alloys Compd. 303 (2000) 393-400.
  • [12] D. Liberzon, A. S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst. 19 (1999) 59-70.
  • [13] R. I. Woodward, E. J. Kelleher, R. C. Howe, G. Hu, F. Torrisi, T. Hasan, et al., Tunable Q-switched fibre laser based on saturable edge-state absorption in few-layer molybdenum disulfide [MoS(2)], Opt. Express 22 (2014) 31113-31122.
  • [14] M. Eichhorn, Generation of short and ultra-short pulses, in: Laser Physics, Springer, 2014, pp. 75-103.
  • [15] A. Malyarevich, I. Denisov, K. Yumashev, V. Mikhailov, R. Conroy, B. Sinclair, V: YAG - a new passive Q-switch for diode-pumped solid-state lasers, Appl. Phys. B: Laser Opt. 67 (1998) 555-558.
  • [16] R. Fluck, B. Braun, E. Gini, H. Melchior, U. Keller, Passively Q-switched 1.34-µm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors, Opt. Lett. 22 (1997) 991-993.
  • [17] X. Feng, H.-y. Tam, P. Wai, Stable and uniform multi wavelength erbium-doped fibre laser using nonlinear polarization rotation, Opt. Express 14 (2006) 8205-8210.
  • [18] S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Laser mode locking using a saturable absorber incorporating carbon nanotubes, J. Lightwave Technol. 22 (2004) 51-56.
  • [19] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, et al., Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers, Adv. Funct. Mater. 19 (2009) 3077-3083.
  • [20] K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, et al., Ultrafast saturable absorption of two-dimensional MoS2 nanosheets, ACS Nano 7 (2013) 9260-9267.
  • [21] B. Chen, X. Zhang, K. Wu, H. Wang, J. Wang, J. Chen, Q-switched fibre laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2, Opt. Express 23 (2015) 26723-26737.
  • [22] C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, et al., Ultra-short pulse generation by a topological insulator based saturable absorber, Appl. Phys. Lett. 101 (2012) 211106.
  • [23] K. Wu, X. Zhang, J. Wang, X. Li, J. Chen, WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers, Opt. Express 23 (2015) 11453-11461.
  • [24] Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, et al., 1-, 1.5-, and 2-µm fibre lasers Q-switched by a broadband few-layer MoS2 saturable absorber, J. Lightwave Technol. 32 (2014) 4077-4084.
  • [25] Y. Chen, C. Zhao, H. Huang, S. Chen, P. Tang, Z. Wang, et al., Self-assembled topological insulator: BiSe membrane as a passive Q-switcher in an erbium-doped fibre laser, J. Lightwave Technol. 31 (2013) 2857-2863.
  • [26] P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Shen, et al., Topological insulator: saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er: YAG ceramic laser, IEEE Photon. J. 5 (2013) 1500707.
  • [27] J. Lee, J. Koo, Y. M. Jhon, J. H. Lee, A femtosecond pulse erbium fibre laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator, Opt. Express 22 (2014) 6165-6173.
  • [28] R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. Offerhaus, et al., Passively Q-switched 0.1-mJ fibre laser system at 1.53 nm, Opt. Lett. 24 (1999) 388-390.
  • [29] Y. Bai, N. Wu, J. Zhang, J. Li, S. Li, J. Xu, et al., Passively Q-switched Nd: YVO4 laser with a Cr4+: YAG crystal saturable absorber, Appl. Opt. 36 (1997) 2468-2472.
  • [30] F. Z. Qamar, T. A. King, Passive Q-switching of the Tm-silica fibre laser near 2 µm by a Cr2+: ZnSe saturable absorber crystal, Opt. Commun. 248 (2005) 501-508.
  • [31] Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, et al., Graphene-based passively Q-switched dual-wavelength erbium-doped fibre laser, Opt. Lett. 35 (2010) 3709-3711.
  • [32] J. Huang, H. Liang, K. Su, Y.-F. Chen, High power passively Q-switched ytterbium fibre laser with Cr4+: YAG as a saturable absorber, Opt. Express 15 (2007) 473-479.
  • [33] J. Liu, S. Wu, Q.-H. Yang, P. Wang, Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fibre laser, Opt. Lett. 36 (2011) 4008-4010.
  • [34] M. Zhang, G. Hu, G. Hu, R. Howe, L. Chen, Z. Zheng, et al., Yb-and Er-doped fibre laser Q-switched with an optically uniform, broadband WS2 saturable absorber, Sci. Rep. 5 (2015).
  • [35] J. Du, Q. Wang, G. Jiang, C. Xu, C. Zhao, Y. Xiang, et al., Ytterbium-doped fibre laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction, Sci. Rep. 4 (2014).
  • [36] H. Ahmad, C. Lee, M. Ismail, Z. Ali, S. Reduan, N. Ruslan, et al., Tunable Q-switched fibre laser using zinc oxide nanoparticles as a saturable absorber, Appl. Opt. 55 (2016) 4277-4281.
  • [37] W. Cao, H. Wang, A. Luo, Z. Luo, W. Xu, Graphene-based, 50 nm wide-band tunable passively Q-switched fibre laser, Laser Phys. Lett. 9 (2011) 54.
  • [38] D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A. Ferrari, Graphene Q-Switched Tunable Fibre Laser, 2010 arXiv: 1011.0115.
  • [39] D.-P. Zhou, L. Wei, B. Dong, W.-K. Liu, Tunable passively-switched erbium-doped fibre laser with carbon nanotubes as a saturable absorber, IEEE Photon. Technol. Lett. 22 (2010) 9-11.
  • [40] S. Harun, F. Abd Rahman, K. Dimyati, H. Ahmad, An efficient gain-flattened C-band Erbium-doped fibre amplifier, Laser Phys. Lett. 3 (2006) 536-538.
  • [41] H. Ahmad, N. Saat, S. Harun, S-band erbium-doped fibre ring laser using a fibre Bragg grating, Laser Phys. Lett. 2 (2005) 369.
  • [42] H. Ahmad, S. Shahi, S. Harun, Bismuth-based erbium-doped fibre as a gain medium for L-band amplification and Brillouin fibre laser, Laser Phys. 20 (2010) 716-719.
  • [43] R. Woodward, E. Kelleher, R. Howe, G. Hu, F. Torrisi, T. Hasan, et al., Tunable Q-switched fibre laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2), Opt. Express 22 (2014) 31113-31122.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a353e4c0-6fba-4ca2-991b-21fffe7ea421
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.