PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digraph-building method for finding a set of minimal realizations of 2-D dynamic systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a digraph-building method designed to find the determination of realization of two-dimensional dynamic system. The main differences between the method proposed and other state-of-the-art solutions used include finding a set of realizations (belonging to a defined class) instead of only one realization, and the fact that obtained realizations have minimal size of state matrices. In the article, the proposed method is described, compared to state-of-the-art methods and illustrated with numerical examples. To the best of authors’ knowledge, the method shown in the paper is superior to all other state-of-the-art solutions both in terms of number of solutions and their matrix size. Additionally, MATLAB function for determination of realization based on the set of state matrices is included.
Rocznik
Strony
589--597
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
  • Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
Bibliografia
  • [1] D.G. Luenberger, Introduction to Dynamic Systems: Theory, Models, and Applications. New York: Wiley, 1979, ch. Positive linear systems.
  • [2] T. Kaczorek, Positive 1D and 2D systems. London: Springer Verlag, 2001.
  • [3] L. Benvenuti and L. Farina, “A tutorial on the positive realization problem,” IEEE Transactions on Automatic Control, vol. 49, no. 5, pp. 651–664, 2004.
  • [4] L. Ntogramatzidis, M. Cantoni, and R. Yang, “On the partial realization of noncausal 2-D linear systems,” IEEE Transactions of Circuits and Systems, vol. 54, pp. 1800–1808, 2007.
  • [5] T. Kaczorek, “Positive realization for 2D systems with delays,” in Proceedings of 2007 International Workshop on Multidimensional (nD) Systems. IEEE, 2007, pp. 137–141.
  • [6] L. Xu, H. Fan, Z. Lin, and N. Bose, “A direct-construction approach to multidimensional realization and LFR uncertainty modeling,” Multidimensional Systems and Signal Processing, vol. 19, no. 3–4, pp. 323–359, 2008.
  • [7] T. Kaczorek and L. Sajewski, The Realization Problem for Positive and Fractional Systems. Berlin: Springer International Publishing, 2014.
  • [8] C.M. Ionescu, D. Copot, A. Maxim, E. Dulf, R. Both, and R.D. Keyser, “Robust autotuning mpc for a class of process control applications,” in 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2016, pp. 1–6.
  • [9] J. DiStefano III, Dynamic Systems Biology Modeling and Simulation. Academic Press, 2013.
  • [10] M. Sebek and Z. Hurak, “2-D polynomial approach to control of leader following vehicular platoons,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 6017–6022, 2011.
  • [11] A. Berman, M. Neumann, and R.J. Stern, Nonnegative Matrices in Dynamic Systems. New York: Wiley, 1989.
  • [12] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge Univ. Press, 1991.
  • [13] E. Fornasini and G. Marchesini, “State-space realization theory of two-dimensional filters,” IEEE Trans, Autom. Contr., vol. 21, pp. 481–491, 1976.
  • [14] T. Blyth and E. Robertson, Basic Linear Algebra (2nd Edition). London: Springer, 2002.
  • [15] L.R. Foulds, Graph Theory Applications. Springer Verlag, 1991.
  • [16] W.D. Wallis, A Beginner’s Guide to Graph Theory. Biiokhäuser, 2007.
  • [17] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (2nd Edition). London: Springer-Verlag, 2009.
  • [18] C. Godsil and G. Royle, Algebraic Graph Theory. Springer Verlag, 2001.
  • [19] E. Fornasini and M.E. Valcher, “Directed graphs, 2D state models, and characteristic polynomials of irreducible matrix pairs,” Linear Algebra and Its Applications, vol. 263, pp. 275–310, 1997.
  • [20] “On the positive reachability of 2D positive systems,” LCNIS, pp. 297–304, 2003.
  • [21] K.A. Markowski, “Determination of positive realization of two dimensional systems using digraph theory and GPU computing method,” in International Symposiumon Theoretical Electrical Engineering, 24th–26th June 2013: Pilsen, Czech Republic, 2013, pp. II7–II8.
  • [22] T. Kaczorek, “Realization problem for general model of twodimensional linear systems,” Bull. Pol. Ac.: Tech., vol. 35, no. 11–12, pp. 633–637, 1987.
  • [23] M. Bisiacco, E. Fornasini, and G. Marchesini, “Dynamic regulation of 2D systems: A state-space approach,” Linear Algebra and Its Applications, vol. 122–124, pp. 195–218, 1989.
  • [24] L. Xu, L. Wu, Q. Wu, Z. Lin, and Y. Xiao, “Reduced-order realization of Fornasini-Marchesini model for 2D systems,” in Circuits and Systems, 2004. ISCAS ’04. Proceedings of the 2004 International Symposium on, vol. 3, 2004, pp. III–289–292.
  • [25] L. Xu, Q. Wu, Z. Lin, Y. Xiao, and Y. Anazawa, “Futher results on realisation of 2D filters by Fornasini-Marchesini model,” in 8th International Conference on Control, Automation, Robotics and Vision, Kunming, China, 6‒9th December, 2004, pp. 1460– 1464.
  • [26] L. Xu, L.Wu, Q.Wu, Z. Lin, and Y. Xiao, “On realization of 2D discrete systems by Fornasini-Marchesini model,” International Journal of Control, Automation, and Systems, vol. 4, no. 3, pp. 631–639, 2005.
  • [27] T. Kaczorek, “Positive realization of 2D general model,” Logistyka, vol. nr 3, pp. 1–13, 2007.
  • [28] K. Hryniów and K. A. Markowski, “Optimisation of digraphsbased realisations for polynomials of one and two variables,” in Progress in Automation, Robotics and Measuring Techniques, ser. Advances in Intelligent Systems and Computing, R. Szewczyk, C. Zieliński, and M. Kaliczyńska, Eds. Springer International Publishing, 2015, vol. 350, pp. 73–83.
  • [29] “Parallel digraphs-building algorithm for polynomial realisations,” in Proceedings of 2014 15th International Carpathian Control Conference (ICCC), 2014, pp. 174–179.
  • [30] “Reachability index calculation by parallel digraphsbuilding,” in 19th International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, September 2‒5, 2014, 2014, pp. 808–813.
  • [31] “Conditions for digraphs representation of the characteristic polynomial,” in Young Scientists Towards the Challenges of Modern Technology, 2014, pp. 77–80.
  • [32] “Classes of digraph structures corresponding to characteristic polynomials,” in Challenges in Automation, Robotics and Measurement Techniques, ser. Advances in Intelligent Systems andComputing, R. Szewczyk, C. Zieliński, and M. Kaliczyńska, Eds. Springer International Publishing, 2015, vol. 440, pp. 329– 339.
  • [33] K.A. Markowski, “Minimal positive realizations of linear continuous-time fractional descriptor systems: Two cases of an input-output digraph structure”, International Journal of Applied Mathematics and Computer Science 28(1), 9‒24 (2018) [Online]. Available: https://content.sciendo.com/view/journals/amcs/28/1/article-p9.xml.
  • [34] K. Hryniów and K.A. Markowski, “Parallel digraphs-building computer algorithm for finding a set of characteristic polynomial realisations of dynamic system,” Journal of Automation, Mobile Robotics & Intelligent Systems (JAMRIS), vol. 10, no. 3, pp. 38–51, 2016.
  • [35] “Optimisation of digraphs creation for parallel algorithm for finding a complete set of solutions of characteristic polynomial,” in 20th International Conference on Methods and Models in Automation and Robotics, 2015, pp. 1139–1144.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a348b2a5-5c0f-4e2e-98f4-566b0e787fc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.