
589Bull.  Pol.  Ac.:  Tech.  66(5)  2018

BULLETIN OF THE POLISH ACADEMY OF SCIENCES 
TECHNICAL SCIENCES, Vol. 66, No. 5, 2018
DOI: 10.24425/124274

Abstract. This paper presents a digraph-building method designed to find the determination of realization of two-dimensional dynamic system. 
The main differences between the method proposed and other state-of-the-art solutions used include finding a set of realizations (belonging to 
a defined class) instead of only one realization, and the fact that obtained realizations have minimal size of state matrices. In the article, the 
proposed method is described, compared to state-of-the-art methods and illustrated with numerical examples. To the best of authors’ knowledge, 
the method shown in the paper is superior to all other state-of-the-art solutions both in terms of number of solutions and their matrix size. 
Additionally, MATLAB function for determination of realization based on the set of state matrices is included.
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more information about the matrix theory, an interested reader 
is referred, for instance, to [11, 12].

Model. Consider the two-dimensional (2D) general model  
Σ = (A0, A1, A2, B0, B1, B2, C, D) [13] described by the equa-
tion:

 
 xi + 1, j + 1 = A0xi, j + A1xi, j + 1 + A2xi + 1, j + 
 xi + 1, j + 1 = + B0ui, j + B1ui, j + 1 + B2ui + 1, j ,
 y(i, j) = Cxi, j + Dui, j ,

 (1)

where xi, j 2 Rn, ui, j 2 Rm and yi, j 2 Rp is state, input and output 
vector, respectively at the point (i, j) and

 
Ak 2 Rn×n, Bk 2 Rn×m, k = 1, 2
C 2 Rp×n, D 2 Rp×m.

 (2)

From (1) for B1 = B2 = 0 we obtain the first Fornasi-
ni-Marchesini model [13] and for A0 = 0 and B0 = 0 the second 
Fornasini-Marchesini model [13].

In this paper the special case of the general model (1) the 
second Fornasini-Marchesini (IIFM) model

 
 xi + 1, j + 1 = A1xi, j + 1 + A2xi + 1, j + 
 xi + 1, j + 1 = + B1ui, j + 1 + B2ui + 1, j ,
 y(i, j) = Cxi, j + Dui, j ,

 (3)

will be considered.
The transfer matrix T(w1, w2) 2 Rp×m of the model (3) is 

given by:

 
T(w1, w2) = 
= C[I ¡ A1w1 ¡ A2w2]

–1[B1w1 + B2w2] + D.
 (4)

1. Introduction

In the field of two-dimensional (2-D) systems, there are still 
problems that have not been solved completely, one of which 
is the realization problem, tackled for example in [1–7]. Each 
of proposed solutions comes with a set of different restrictions 
what realization can be obtained and none of them allows 
for the determination of all the possible solutions for given 
transfer function. Two-dimensional systems are used exten-
sively for modeling in industrial processes, including for ex-
ample distillation columns [8], chemical reactors, electronic 
and electrical circuits; biology and medicine [9]; transporta-
tion [10].

The realization problem is presented in detail in Section 2 
along with the state-of-the-art. In Section 3, both sufficient con-
ditions for digraph structure allowing to obtain a set of realiza-
tions in the class described and the method based on such di-
graphs, allowing to determine many realizations of 2-D system, 
are presented. In Section 4, the proposed method is compared 
to other algorithms, illustrating how the method works for ex-
amples used in different papers. Finally, in Section 5, the main 
points of article and the advantages of method are summarized.

Notation. In this paper the following notation will be used. The 
set n×m real matrices will be denoted by Rn×m and Rn = Rn×1. 
If G = [gij] is a matrix, we write G   0 (matrix G is called 
non-negative), if gij   0 for all i, j; G > 0 (matrix G is called 
positive), if G   0 and any gij > 0; G À 0 (matrix G is called 
strictly positive), if gij > 0 for all i, j. The set of n×m real ma-
trices with non-negative entries will be denoted by R+

n×m and 
R+

n = R+
n×1. The n×n identity matrix will be denoted by In. For 
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In the paper we can assume without loss of generality that 
the D = 0, as symbolic form of the transfer matrix will be the 
same, as in the model matrix D influences only numeric values 
of the terms.

Polynomial. Let F be a field e.g., of the real number R. The 
function P(w1, w2) of the variable w1, w2, is called polynomial:

 p(w1, w2) = 
n1

i1=0
∑

n2

i2=0
∑ ai1, i2w1

i1w2
i2 (5)

in the variables w1, w2, over the field F, where ai1, i2 2 F are 
called the coefficients of the polynomial.

The set of polynomial (5) over the field F will be denoted 
by F[w1, w2].

If an1, n2
  6= 0, then the non-negative integer n = n1 + n2 is 

called the degree of a polynomial and is denoted deg p(w1, w2), 
ie., n = deg p(w1, w2). The polynomial is called monic, if 
an1, n2

 = 1 and zero polynomial, if ai1, i2 = 0.

Remark 1. For example, for a two-dimensional system the 
characteristic polynomial consists of two variables: z1 and z2 if 
we have a discrete time system; s1 and s2 if we have a contin-
uous time system; z and s if we have a hybrid system.

Interested reader may find Definition and properties of the 
characteristic polynomial in books on linear algebra, for ex-
ample in [14, ch. 9].

Directed graph. A directed graph (also called digraph) D con-
sists of a non-empty finite set V(D) of elements called vertices 
and a finite set A(D) of ordered pairs of distinct vertices called 
arcs. We call V(D) the vertex set and A(D) the arc set of D. 
We will often write D = (V, A) which means that V and A are 
the vertex set and arc set of D, respectively. The order of D is 
the number of vertices in D. The size of D is the number of 
arc in D. For an arc (v1, v2), the first vertex v1 is its tail and the 
second vertex v2 is its head. More information about the digraph 
theory is given in [15–18].

A two-dimensional digraph D(2) is a directed graph with two 
types of arcs. For the first time, this type of digraph was pre-
sented in papers [19] and [20]. There exists A1–arc (or A2– arc) 
from vertex vj to vertex vi if and only if the (i, j)–th entry of the 
matrix A1 (or A2) is non-zero. There exist B1– arc (or B2–arc) 
from source sm to vertex vj if and only if the (i, m)– th entry of 
the matrix B1 (or B2) is non-zero.

For the system described by the matrices
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If an1,n2 �= 0, then the non-negative integer n = n1 + n2 is
called the degree of a polynomial and is denoted deg p(w1,w2),
ie., n = deg p(w1,w2). The polynomial is called monic, if
an1,n2 = 1 and zero polynomial, if ai1,i2 = 0.

REMARK 1. For example, for a two-dimensional system the
characteristic polynomial consists of two variables: z1 and z2
if we have a discrete time system; s1 and s2 if we have a con-
tinuous time system; z and s if we have a hybrid system.

Interested reader may find definition and properties of the
characteristic polynomial in books on linear algebra, for ex-
ample in [14, ch. 9].
Directed graph: A directed graph (called also digraph) D con-
sists of a non-empty finite set V(D) of elements called vertices
and a finite set A(D) of ordered pairs of distinct vertices called
arcs. We call V(D) the vertex set and A(D) the arc set of D.
We will often write D = (V,A) which means that V and A are
the vertex set and arc set of D, respectively. The order of D is
the number of vertices in D. The size of D is the number of
arc in D. For an arc (v1,v2), the first vertex v1 is its tail and
the second vertex v2 is its head. More information about the
digraph theory is given in [15, 16, 17, 18].

A two-dimensional digraphs D(2) is a directed graph with
two types of arcs . For the first time, this type of digraph was
presented in papers [19] and [20]. There exists A1–arc (or A2–
arc) from vertex v j to vertex vi if and only if the (i, j)–th entry
of the matrix A1 (or A2) is non-zero. There exist B1–arc (or
B2–arc) from source sm to vertex v j if and only if the (i,m)–th
entry of the matrix B1 (or B2) is non-zero.

For the system described by the matrices

A1 =




v j \
vi v1 v2 v3

v1 0 2 0
v2 3 0 0
v3 0 1 0


, A2 =




v j \
vi v1 v2 v3

v1 0 0 4
v2 0 0 2
v3 0 0 0


 (6)

we can draw two-dimensional digraph D(2) presented in Figure
1 consisting from vertices v1, v2 and v3.

v1 v2 v3

Fig. 1. Digraph D(2) corresponding to (6)

2. Problem statement
State-of-the-art: The transfer matrix of the multiple-input
multiple-output (MIMO) model described by the equation (3)
has the form of (4). For single-input single-output (SISO)
model, equation (4) takes the following form of transfer func-
tion:

T (w1,w2) =
n(w1,w2)

d(w1,w2)
=

n

∑
l=0

n

∑
k=0

n�l+k�2n

bl,kwl
1wk

2

1+
n

∑
l=0

n

∑
k=0

0<l+k�n

dl,kwl
1wk

2

, (7)

where

d(w1,w2) = 1+
n

∑
l=0

n

∑
k=0

0<l+k�n

dl,kwl
1wk

2 = 1+dn,0wn
1 +

+d0,nwn
2 +dn−1,1wn−1

1 w2 +d1,n−1w1wn−1
2 + . . . (8)

. . .+d1,0w1 +d0,1w2

is a characteristic polynomial.
Matrices (2) are called a realization of a given transfer func-

tion (7), if they satisfy the (4). A realization is called minimal,
if the dimension of a state matrices are minimal among all re-
alizations of T (w1,w2).

REMARK 2. Proposed algorithm works for 2-D dynamic
systems, including positive dynamic systems (if the system (3)
satisfies Definition 1 and Theorem 1). Matrices (9) satisfying
(4) are called a positive realization of a given transfer function
(7).

DEFINITION 1. The model (3) is called (an internally) pos-
itive if for all boundary conditions x(i,0) ∈ Rn

+ for i ∈ Z+

and x(0, j) ∈ Rn
+ for j ∈ Z+ and every sequence of inputs

u(i, j)∈Rm
+ we have x(i, j)∈Rn

+ and y(i, j)∈Rp
+ for i, j ∈Z+.

THEOREM 1. The two-dimensional IIFM model described
by the equation (3) is internally positive if and only if

Ak ∈ Rn×n
+ ,Bk ∈ Rn×m

+ ,k = 1,2C ∈ Rp×n
+ ,D ∈ Rp×m

+ . (9)

The proof for Theorem 1 can be found in [2].
Currently, entries of the state matrices are determined

using canonical forms [3, 5, 21]. Such methods obtain one
of the possible state matrix realizations of the characteristic
polynomial. State-of-the-art algorithms proposed in [22, 23,
24, 25, 26, 27] are compared to the algorithm presented in this
paper in the latter part of the article (Section 4).

Problem formulation: For IIFM SISO model determine a
set of possible realizations that should be minimal among all
possible. To determine a set of realizations two-dimensional
D(2) digraphs theory will be used to find sets of possible state
matrices A1 and A2.

There are no known methods of finding a set of all possible
realizations for a given characteristic polynomial, due to the
complexity of the problem that is assumed to be NP-hard [17,
28]. As canonical forms are unable to give more then a few of
possible solutions, parallel graph-based method was first pro-
posed in [29] and [30], but extensive testing showed that it
was not feasible for practical implementation as the problem
of finding all possible realizations of a given polynomial is of
such complexity that it cannot be solved in reasonable time
even by the brute-force GPGPU (General-Purpose computing
on Graphics Processor Units) method [31].

Due to such problems, in this paper improved version of
the algorithm is presented. Restrictions on the search space
introduced and redefined memory allocation makes the process
of finding all the possible sets of minimal solutions belonging
to given class possible in practically possible (linearithmic to
factorial) time, as shown in Subsection 3.4.
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Currently, entries of the state matrices are determined using 
canonical forms [3, 5, 21]. Such methods obtain one of the pos-
sible state matrix realizations of the characteristic polynomial. 
State-of-the-art algorithms proposed in [22–27] are compared 
to the algorithm presented in this paper in the latter part of the 
article (Section 4).

Problem formulation. For IIFM SISO model determine a set of 
possible realizations that should be minimal among all possible. 
To determine a set of realizations two-dimensional D(2) digraph 
theory will be used to find sets of possible state matrices A1 
and A2.

There are no known methods of finding a set of all pos-
sible realizations for a given characteristic polynomial, due to 
the complexity of the problem that is assumed to be NP-hard 
[17, 28]. As canonical forms are unable to give more then a few 
of possible solutions, a parallel graph-based method was first 
proposed in [29] and [30], but extensive testing showed that it 
was not feasible for practical implementation as the problem 
of finding all possible realizations of a given polynomial is of 
such complexity that it cannot be solved in reasonable time 
even by the brute-force GPGPU (general-purpose computing 
on graphics processor units) method [31].

Due to such problems, in this paper improved version of 
the algorithm is presented. Restrictions on the search space 
introduced and redefined memory allocation makes the process 
of finding all the possible sets of minimal solutions belonging 
to given class possible in practically possible (linearithmic to 
factorial) time, as shown in Subsection 3.4.

3. Proposed solution

As a solution to the problem of finding a set of possible minimal 
solutions of given characteristic polynomial two-stage approach 
is proposed. In the first stage, a digraph-building algorithm is 
used. The algorithm starts with creating all possible digraph 
representations for all binomials in the characteristic polyno-
mial (as explained in Subsection 3.1), then joins them by the 
use of disjoint union to create all possible variants of digraphs 
representing given polynomial realization. The algorithm uses 
growth and prune steps to eliminate redundant solutions before 
the main computational step. The result takes the form of state 
matrices A1 and A2. The second stage of the solution is real-
ized with the use of MATLAB Symbolic Toolbox to determine 
matrices B1, B2 and C.

Three classes of digraph structures corresponding to the 
characteristic polynomial have been introduced in [32]. The al-
gorithm presented in this article works for structures belonging 
to class K1, determined by satisfying the conditions S1a and 
S1b presented in [32, pp.5] and re-introduced for reader’s con-
venience below. Such structures are the only ones that, at the 
moment, allow for computation in feasible time.

Class K1: Digraph structures belonging to class K1 satisfy all 
characteristic polynomials of given type (with the same number 
and power of terms) for any dl, k  6= 0 wages in (8). Those are 

digraph structures that are the most thoroughly examined in 
papers [28, 31] and that can be computed quickly using di-
graph-based GPGPU methods, as there is no need for solving 
a system of polynomial equations [32]. Digraph belongs to class 
K1 if the following conditions are satisfied:

(S1a): V1(D1
(2)) \ V2(D2

(2)) \ ¢¢¢ \ Vj(Dj
(2))  6= f0ǅg;

(S1b): the number of cycles in digraph D(2) equals j;

where j is the number of binomials in the characteristic poly-
nomial and Vh(Dh

(2)) is a set of vertices of digraph Dh
(2) of h-th 

binomial, h = 1, …, j.

3.1. Stage 1. In the first step, we decompose monic polynomial 
(8) into a set of j binomials. The factor of 1 is a special case, 
as it is used in the topology to represent digraph vertices, so 
polynomial (8) can be represented as

 

d(w1, w2) = (1 + dn, 0w1
n) [ (1 + d0, nw2

n) [ 
d(w1, w2) [ (1 + dn ¡ 1,1w1

n ¡ 1w2) [ 
d(w1, w2) [ (1 + d1,n ¡ 1w1w2

n ¡ 1) [ … [
d(w1, w2) [ (1 + d1,0w1) [ (1 + d0,1w2) = 
d(w1, w2) = Bn,0 [ B0,n [ Bn ¡ 1,1 [ B1,n ¡ 1 [ … [
d(w1, w2) [ B1,0 [ B0,1,

 (10)

where [ is digraphs operation on vertices called composition 
relative to vertices. In details this kind of relation is presented 
in paper [33]. For each of binomials Bl, k, where l = 1, …, n, 
k = 1, …, n, 0 < l + k   n we create digraph representation, 
that consists of k + l vertices and one k + l-arc cycle, where 
k + l is a sum of powers of all variables of the binomial.

Example 1. Let us take polynomial d1(w1, w2) = 1 + w1
2w2 + w1, w2. 

To create digraph representation for it we need first to create 
digraph representation for two binomials: B2,1 = 1 + w1

2w2 pre-
sented in Fig. 2a and B1,1 = 1 + w1, w2 in Fig. 2b.

Fig. 2. (a) Digraph D1
(2) corresponding to binomial 1 + w1

2w2;  
(b) Digraph D2

(2) corresponding to binomial 1 + w1, w2
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3. Proposed solution
As a solution to the problem of finding a set of possible mini-
mal solutions of given characteristic polynomial two-stage ap-
proach is proposed. In the first stage digraph-building algo-
rithm is used. The algorithm starts with creating all possible
digraph representations for all binomials in the characteristic
polynomial (as explained in Subsection 3.1), then joins them
by the use of disjoint union to create all possible variants of
digraphs representing given polynomial realization. The al-
gorithm uses growth and prune steps to eliminate redundant
solutions before the main computational step. Result of the al-
gorithm’s work is in the form of state matrices A1 and A2. The
second stage of the solution is realized with the use of MAT-
LAB Symbolic Toolbox to determine matrices B1, B2 and C.

Three classes of digraph structures corresponding to the
characteristic polynomial have been introduced in [32]. Algo-
rithm presented in this article works for structures belonging to
class K1, that are determined by satisfying the conditions S1a
and S1b presented in [32, pp.5] and re-introduced for reader’s
convenience below. Such structures are the only ones that, at
the moment, allow for computation in feasible time.
Class K1: Digraph structures belonging to class K1 satisfy all
characteristic polynomials of given type (with the same num-
ber and power of terms) for any dl,k �= 0 wages in (8). Those
are digraph structures that are the most thoroughly examined
in papers [28], [31] and that can be computed quickly using
digraph-based GPGPU methods, as there is no need of solv-
ing a system of polynomial equations [32]. Digraph belongs to
class K1 if the following conditions are satisfied:

(S1a): V1(D(2)
1 )∩V2(D(2)

2 )∩·· ·∩V j(D(2)
j ) �= { /0};

(S1b): the number of cycles in digraph D(2) equals j;

where j is the number of binomials in the characteristic
polynomial and Vh(D

(2)
h ) is a set of vertices of digraph D(2)

h
of h-th binomial, h = 1, . . . , j.

3.1. Stage One In the first step, we decompose monic poly-
nomial (8) into a set of j binomials. The factor of 1 is a special
case, as it is used in the topology to represent digraph vertices,
so polynomial (8) can be represented as

d (w1,w2) = (1+dn,0wn
1)∪ (1+d0,nwn

2)∪ (10)

∪ (1+dn−1,1wn−1
1 w2)∪ (1+d1,n−1w1wn−1

2 )∪ . . .

∪ (1+d1,0w1)∪ (1+d0,1w2) =

= Bn,0 ∪B0,n ∪Bn−1,1 ∪B1,n−1 ∪·· ·∪B1,0 ∪B0,1,

where ∪ is digraphs operation on vertices called composition
relative to vertices. In details this kind of relation is presented
in paper [33]. For each of binomials Bl,k, where l = 1, . . . ,n,
k = 1, . . . ,n, 0 < l + k � n we create digraph representation,
that consists of k + l vertices and one k + l-arc cycle, where
k+ l is a sum of powers of all variables of the binomial.

EXAMPLE 1. Lets take polynomial d1(w1,w2) = 1 +
w2

1w2 + w1w2. To create digraph representation for it we
need first to create digraph representation for two binomials:

B2,1 = 1+w2
1w2 presented in Figure 2(a) and B1,1 = 1+w1w2

in Figure 2(b).

(a) (b)

Fig. 2. (a) Digraph D(2)
1 corresponding to binomial 1+w2

1w2; (b)

Digraph D(2)
2 corresponding to binomial 1+w1w2;

After creation of all digraph representations of binomials
in the polynomial, we can determine all possible characteris-
tic polynomial realizations using all combinations of the di-
graph binomial representations. Finally, we combine by dis-
joint union received binomial digraphs into a set of digraphs,
representing each possible combination of joining binomial di-
graph representations, each of which is corresponding to the
characteristic polynomial (8).

EXAMPLE 2. To achieve digraph representation for our
polynomial d1(w1,w2) from Example 1 we need to add digraph
representations of binomials. There are possible three realiza-
tions of polynomial d1 by adding binomial B1,1 to vertices: v1
and v2 (Figure 3(a)); v2 and v3 (Figure 3(b)); v1 and v3 (Figure
3(c)).

As can be seen in example above we do not need to put
digraph D(2)

1 on other vertices as it’s different placement will
be synonymous to rotation.

v1 v2 v3

(a)
v1 v2 v3

(b)

v1 v2 v3

(c)

Fig. 3. Sample polynomial digraphs corresponding to union of di-
graphs D(2)

1 ∪D(2)
2 : (a) D(2)

3 ; (b) D(2)
4 ; (c) D(2)

5

To determine a set of possible solutions in finite time proper
allocation of memory for parallel computation in advance is
necessary. Determination of exact number of solutions that
will be created after the prune step of the algorithm, as it allows
us to prepare a number of kernels for each binomial in advance
and it is essential for full parallelism of the algorithm. We can
determine the number of possible distinct digraphs solutions
for given binomial using the formula:

p =

(
m−1

x1,x2, · · · ,xc

)
=

(m−1)!
x1!x2! · · ·xc!

, (11)

where xi represents number of occurrences of i-th variable in
the binomial and x1 + x2 + · · ·+ xc = m.

REMARK 3. As stated in [32] not all digraph structures rep-
resenting characteristic polynomial (8) created from binomial
sub-graphs can be easily obtained. For some of them, it is im-
possible to obtain state matrices that are positive at all, while
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After creation of all digraph representations of binomials 
in the polynomial, we can determine all possible characteristic 
polynomial realizations using all combinations of the digraph 
binomial representations. Finally, we combine by disjoint union 
received binomial digraphs into a set of digraphs, representing 
each possible combination of joining binomial digraph repre-
sentations, each of which is corresponding to the characteristic 
polynomial (8).
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Example 2. To achieve digraph representation for our polyno-
mial d1(w1, w2) from Example 1 we need to add digraph rep-
resentations of binomials. There are three possible realizations 
of polynomial d1 by adding binomial B1,1 to vertices: v1 and v2 
(Fig. 3a); v2 and v3 (Fig. 3b); v1 and v3 (Fig. 3c).

 B1 =

&

$

b1
1

b2
1

b1
1

&

$, B2 =

&

$

b1
2

b2
2

b1
2

&

$, C = 
h
c1 c2 ¢¢¢ cn

i
. (12)

After inserting matrices (12) and state matrices A1 and A2 deter-
mined in the first stage to the (4) we obtain polynomial ñ(w1, w2). 
After comparing variables with the same powers of the

 

n(w1, w2) = 
l=0

n

∑
k=0

n

∑
n l + k 2n

nl, k w1
lw2

k = dn, nw1
nw2

n +

n(w1, w2) + dn ¡ 1, nw1
n ¡ 1w2

n + dn, n ¡ 1w1
nw2

n ¡ 1 + …

n(w1, w2) … + dn, 0w1
n + d0, nw2

n

 (13)

with the polynomial ñ(w1, w2) we obtain a non-linear set of the 
equations. After solving them, we obtain entries of the matrices (12).

That part of the algorithm is realised by the MATLAB func-
tion realisationBC created by the authors and freely available 
at author’s website1.

3.3. Algorithm overview. For clarity, algorithm presented in the 
paper is shown below in form of pseudo-code. First stage of the 
algorithm is presented in details in [34], while the second stage is 
documented in help file explaining the workings of the function 
(available with the function). Interested reader, wanting to see 
how the implemented computer version of the algorithm works, 
should see [34], where all functions that algorithm consists of are 
presented, alongside with explanation of how they work, what 
values are assigned to variables and execution method. Also, de-
tails about kernel allocation are presented and more explanation 
of how the algorithm complexity, presented in 3.4, was calculated.

3.4. Algorithm complexity. The complexity of the algorithm 
presented tends to be high and can be assumed to be NP-hard, 
as digraph realization for the characteristic polynomial includes 
operations that are considered NP-complete or NP-hard prob-
lems [28, 35]. The computational complexity of the presented 
computer algorithm can be estimated as

 (V ¡ 1)(c2 + slog s + V), (14)

for the growth/prune part, is factorial and can be presented as 
T(V) = O(V!) in big O notation. For the digraph creation part, 
the computational complexity of the algorithm run parallel can 
be presented as

 (2n + 1)V2 + nV logV + V logV n, (15)

which makes the computational complexity of the part 
T(V) = O(V logV n) and makes the part of algorithm solvable 

1https://cloud.ee.pw.edu.pl/nextcloud/index.php/s/DsQd6mEMoQK7Aza

Fig. 3. Sample polynomial digraphs corresponding to union of digraphs 
D1

(2) [ D2
(2): (a) D3

(2); (b) D4
(2); (c) D5

(2)
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3. Proposed solution
As a solution to the problem of finding a set of possible mini-
mal solutions of given characteristic polynomial two-stage ap-
proach is proposed. In the first stage digraph-building algo-
rithm is used. The algorithm starts with creating all possible
digraph representations for all binomials in the characteristic
polynomial (as explained in Subsection 3.1), then joins them
by the use of disjoint union to create all possible variants of
digraphs representing given polynomial realization. The al-
gorithm uses growth and prune steps to eliminate redundant
solutions before the main computational step. Result of the al-
gorithm’s work is in the form of state matrices A1 and A2. The
second stage of the solution is realized with the use of MAT-
LAB Symbolic Toolbox to determine matrices B1, B2 and C.

Three classes of digraph structures corresponding to the
characteristic polynomial have been introduced in [32]. Algo-
rithm presented in this article works for structures belonging to
class K1, that are determined by satisfying the conditions S1a
and S1b presented in [32, pp.5] and re-introduced for reader’s
convenience below. Such structures are the only ones that, at
the moment, allow for computation in feasible time.
Class K1: Digraph structures belonging to class K1 satisfy all
characteristic polynomials of given type (with the same num-
ber and power of terms) for any dl,k �= 0 wages in (8). Those
are digraph structures that are the most thoroughly examined
in papers [28], [31] and that can be computed quickly using
digraph-based GPGPU methods, as there is no need of solv-
ing a system of polynomial equations [32]. Digraph belongs to
class K1 if the following conditions are satisfied:

(S1a): V1(D(2)
1 )∩V2(D(2)

2 )∩·· ·∩V j(D(2)
j ) �= { /0};

(S1b): the number of cycles in digraph D(2) equals j;

where j is the number of binomials in the characteristic
polynomial and Vh(D

(2)
h ) is a set of vertices of digraph D(2)

h
of h-th binomial, h = 1, . . . , j.

3.1. Stage One In the first step, we decompose monic poly-
nomial (8) into a set of j binomials. The factor of 1 is a special
case, as it is used in the topology to represent digraph vertices,
so polynomial (8) can be represented as

d (w1,w2) = (1+dn,0wn
1)∪ (1+d0,nwn

2)∪ (10)

∪ (1+dn−1,1wn−1
1 w2)∪ (1+d1,n−1w1wn−1

2 )∪ . . .

∪ (1+d1,0w1)∪ (1+d0,1w2) =

= Bn,0 ∪B0,n ∪Bn−1,1 ∪B1,n−1 ∪·· ·∪B1,0 ∪B0,1,

where ∪ is digraphs operation on vertices called composition
relative to vertices. In details this kind of relation is presented
in paper [33]. For each of binomials Bl,k, where l = 1, . . . ,n,
k = 1, . . . ,n, 0 < l + k � n we create digraph representation,
that consists of k + l vertices and one k + l-arc cycle, where
k+ l is a sum of powers of all variables of the binomial.

EXAMPLE 1. Lets take polynomial d1(w1,w2) = 1 +
w2

1w2 + w1w2. To create digraph representation for it we
need first to create digraph representation for two binomials:

B2,1 = 1+w2
1w2 presented in Figure 2(a) and B1,1 = 1+w1w2

in Figure 2(b).

(a) (b)

Fig. 2. (a) Digraph D(2)
1 corresponding to binomial 1+w2

1w2; (b)

Digraph D(2)
2 corresponding to binomial 1+w1w2;

After creation of all digraph representations of binomials
in the polynomial, we can determine all possible characteris-
tic polynomial realizations using all combinations of the di-
graph binomial representations. Finally, we combine by dis-
joint union received binomial digraphs into a set of digraphs,
representing each possible combination of joining binomial di-
graph representations, each of which is corresponding to the
characteristic polynomial (8).

EXAMPLE 2. To achieve digraph representation for our
polynomial d1(w1,w2) from Example 1 we need to add digraph
representations of binomials. There are possible three realiza-
tions of polynomial d1 by adding binomial B1,1 to vertices: v1
and v2 (Figure 3(a)); v2 and v3 (Figure 3(b)); v1 and v3 (Figure
3(c)).

As can be seen in example above we do not need to put
digraph D(2)

1 on other vertices as it’s different placement will
be synonymous to rotation.

v1 v2 v3

(a)
v1 v2 v3

(b)

v1 v2 v3

(c)

Fig. 3. Sample polynomial digraphs corresponding to union of di-
graphs D(2)

1 ∪D(2)
2 : (a) D(2)

3 ; (b) D(2)
4 ; (c) D(2)

5

To determine a set of possible solutions in finite time proper
allocation of memory for parallel computation in advance is
necessary. Determination of exact number of solutions that
will be created after the prune step of the algorithm, as it allows
us to prepare a number of kernels for each binomial in advance
and it is essential for full parallelism of the algorithm. We can
determine the number of possible distinct digraphs solutions
for given binomial using the formula:

p =

(
m−1

x1,x2, · · · ,xc

)
=

(m−1)!
x1!x2! · · ·xc!

, (11)

where xi represents number of occurrences of i-th variable in
the binomial and x1 + x2 + · · ·+ xc = m.

REMARK 3. As stated in [32] not all digraph structures rep-
resenting characteristic polynomial (8) created from binomial
sub-graphs can be easily obtained. For some of them, it is im-
possible to obtain state matrices that are positive at all, while
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As can be seen in example above we do not need to put 
digraph D1

(2) on other vertices as its different placement will be 
synonymous to rotation.

To determine a set of possible solutions in finite time proper 
allocation of memory for parallel computation in advance is 
necessary. Determination of exact number of solutions that will 
be created after the prune step of the algorithm, as it allows us 
to prepare a number of kernels for each binomial in advance 
and it is essential for full parallelism of the algorithm. We can 
determine the number of possible distinct digraph solutions for 
given binomial using the formula:

 p = 
µ

m ¡ 1
x1, x2, ¢¢¢, xc

¶
 = 

(m ¡ 1)!
x1!x2! ¢¢¢ xc!

, (11)

where x1 represents number of occurrences of i-th variable in 
the binomial and x1 + x2 + ¢¢¢ + xc = m.

Remark 3. As stated in [32] not all digraph structures rep-
resenting characteristic polynomial (8) created from binomial 
sub-graphs can be easily obtained. For some of them, it is im-
possible to obtain state matrices that are positive at all, while 
others generate solutions for which it is needed to get the co-
efficients of state matrices by solving a system of polynomial 
equations that, in some cases, can be under-determined. Those 
solutions are always outside of the class K1, which constitutes 
the reason for checking conditions S1a and S1b.

Remark 4. The solutions obtained in this stage tend to be 
minimal in size of state matrices, which is n (the order of the 
characteristic polynomial), as in the proof of Cayley-Hamilton 
theorem.

3.2. Stage 2. In the second step, we must find matrices B1, B2 
and C. Let us assume thet the matrices have the following form:
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in linearithmic time, if there are enough kernels available. The 
complexity of Stage 1 of the algorithm is presented in more 
detail in [28, 34, 35]

4.1. Examples

Example 3. Consider the following two-dimensional transfer 
function used in papers [23] and [24]:

 G(z1, z2) = 
α1z1 + α2z2

1 ¡ β1z1 ¡ β2z2
. (16)

Using algorithm proposed in this paper we can write the 
following state matrices which satisfy the characteristic poly-
nomial d(z1, z2) = 1 ¡ β1z1 ¡ β2z2. In the Fig. 4, we have pre-
sented its two-dimensional digraph.

 
A1 = 

h
w(v1, v1) 1

i
 = 

h
β1

i
,

A2 = 
h
w(v1, v1) 2

i
 = 

h
β2

i
.
 (17)

Algorithm 1. DetermineState Matrix()

 1: Determine number of binomials in characteristic polyno-
mial;

 2: for binomial = 1 to binomials do
 3: Determine all possible digraph D(2) realization for 

each binomial B (growth step);
 4: Remove redundant solutions by quick comparison 

of values of hash function (prune step);
 5: end for
 6: Determine number of possible digraph solutions (to allo-

cate memory for kernels)
 7: Determine all possible polynomial digraph realizations as 

a combinations of the digraph binomial representations;
 8: for kernel = 1 to solutions do
 9: Create digraph realization by means of disjoint union 

of assigned sub-digraph combinations;
 10: Fill A1, A2 matrices based on arcs of created digraph;
 11: Check the positivity of A1, A2 matrices;
 12: Determine intersection set of all sub-digraphs;
 13: Count number of cycles in obtained digraph and 

compare to number of binomials;
 14: Check (I ¡ A1w1 ¡ A2w2);
 15: Perform synchronization between device (GPU) and 

host (CPU);
 16: end for
 17: for kernel = 1 to solutions do
 18: Obtain B1, B2, C matrices using the MATLAB func-

tion;
 19: end for

The complexity of the second stage of the algorithm, per-
formed with the use of MATLAB function, is hard to estimate 
as for fast and efficient running MATLAB uses build-in MEX 
functions. Tracing how they work in detail, even with the use 
of debuggers, is almost impossible for complicated problems. 
The idea of algorithm’s work is presented in help file attached 
to the function and the function’s code can be downloaded and 
checked, but the actual running of the MATLAB function is 
hard to estimate even for function’s authors. Due to that next 
step in optimization of algorithm is moving the last stage of the 
algorithm from MATLAB MuPAD environment into a CUDA C 
code run parallel on GPU device, both due to improved speed of 
such solution and the ability to analyze the real computational 
complexity of the function.

4. Comparison and Discussion

We compared the effectiveness of the proposed method with the 
existing ones in Subsection 4.2 on all examples used in papers 
showing those methods and presented the workings in-detail on 
two examples presented in Subsection 4.1.

Fig. 4. Two-dimensional digraph D(2) corresponding to (17)

Substituting state matrices (17) and matrices

B1 = 
h
b1

1
i
, B2 = 

h
b1

2
i
, C = 

h
c1

i

to the equation n(z1, z2) = C[I ¡ A1z1 ¡ A2z2]
–1(B1z1 ¡ B2z2), 

we obtain: c1b1
1z1 + c1b1

2z2 = n(z1, z2) = α1z1 + α2z2. After 
comparing the same power of the variables z1 and z2, we get 
the set of the equations: c1b1

1 = α1, c1b1
2 = α2. After solving 

them we receive the matrices

 B1 = 
h
b1

1
i
 = 
h
α1/c1

i
, B2 = 

h
b1

2
i
 = 
h
α2/c1

i
, C1 = 

h
c1

i
. (18)

which satisfy the transfer function (16).
In paper [23, pp.207] and in paper [24, pp.III-292], we can 

find a remark with information that the procedure proposed 
does not give in general minimal realization. The order of the 
obtained realization for our algorithm is 1, and it is minimal 
among all possible, while the order obtained in [23] and [24] 
is 2. Additionally, we have one minimal structure of the two-di-
mensional digraph, but entries of the matrices B1, B2 depend 
on the entry of the matrix C. Thus we have an infinite number 
of realizations which satisfy the transfer function (16). Com-
parison between the algorithm proposed in this paper and al-
gorithms proposed in papers [23] and [24] is presented in 
Table 2.

Example 4. Consider the following two-dimensional transfer 
function used in paper [26]:

G(z1, z2) = 
b10z1 + b01z2 + b11z1z2

1 ¡ a10z1 ¡ a01z2 ¡ a11z1z2 ¡ a02z2
2

. (19)

Digraphs-Building Method for Finding a Set of Minimal Realizations of 2-D Dynamic Systems

that next step in optimization of algorithm is moving the last
stage of the algorithm from MATLAB MuPAD environment
into a CUDA C code run parallel on GPU device, both due to
improved speed of such solution and the ability to analyze the
real computational complexity of the function.

4. Comparison and Discussion
We compared the effectiveness of the proposed method with
the existing ones in Subsection 4.2 on all examples used in
papers showing those methods and presented the workings in-
detail on two examples presented in Subsection 4.1.

4.1. Examples

EXAMPLE 3. Consider the following two-dimensional
transfer function used in papers [23] and [24]:

G(z1,z2) =
α1z1 +α2z2

1−β1z1 −β2z2
. (16)

Using algorithm proposed in this paper we can write the fol-
lowing state matrices which satisfy the characteristic polyno-
mial d(z1,z2) = 1−β1z1 −β2z2. In the Figure 4, we have pre-
sented its two-dimensional digraph.

A1 =
[

w(v1,v1)A1

]
=
[

β1

]
, (17)

A2 =
[

w(v1,v1)A2

]
=
[

β2

]
.

v1

w(v1,v1)A1 z1 w(v1,v1)A2 z2

Fig. 4. Two-dimensional digraph D(2) corresponding to (17)

Substituting state matrices (17) and matrices

B1 =
[
b1

1
]
, B2 =

[
b2

1
]
, C = [c1]

to the equation n(z1,z2)=C[I−A1z1−A2z2]
−1 (B1z1 +B2z2),

we obtain: c1b1
1z1 + c1b2

1z2 = n(z1,z2) = α1z1 +α2z2. After
comparing the same power of the variables z1 and z2, we get
the set of the equations: c1b1

1 = α1, c1b2
1 = α2. After solving

them we receive the matrices

B1 =
[

b1
1

]
=
[

α1/c1

]
, B2 =

[
b2

1

]
=
[

α2/c1

]
, (18)

C1 =
[

c1

]
.

which satisfy the transfer function (16).
In paper [23, pp.207] and in paper [24, pp.III-292], we can

find a remark with information that the procedure proposed
does not give in general minimal realization. The order of the
obtained realization for our algorithm is 1, and it is minimal
among all possible, while the order obtained in [23] and [24]
is 2. Additionally, we have one minimal structure of the two-
dimensional digraph, but entries of the matrices B1, B2 depend
on the entry of the matrix C. Thus we have an infinite number
of realizations which satisfy the transfer function (16). Com-
parison between the algorithm proposed in this paper and algo-
rithms proposed in papers [23] and [24] is presented in Table
2.

EXAMPLE 4. Consider the following two-dimensional
transfer function used in paper [26]:

G(z1,z2) =
b10z1 +b01z2 +b11z1z2

1−a10z1 −a01z2 −a11z1z2 −a02z2
2
. (19)

Using algorithm proposed in this paper, we can write the
following state matrices which satisfy the characteristic poly-
nomial d(z1,z2). In the Figure 5, we have presented one of
possible two-dimensional digraph realizations.

A1 =

[
w(v1,v1)A1 0
w(v1,v2)A1 0

]
=

[
a10 0
a11 0

]
, (20)

A2 =

[
w(v1,v1)A2 w(v2,v1)A2

w(v1,v2)A2 0

]
=

[
a01 1
a02 0

]
.

v1
v2w(v1,v2)A1 z1

w(v1,v1)A1 z1

w(v1,v1)A2 z2

w(v2,v1)A2 z2

w(v1,v2)A2 z2

Fig. 5. Two-dimensional digraph D(2) corresponding to (20)

Substituting state matrices (20) and matrices

B1 =
[

b1
1 b1

2

]T
, B2 =

[
b2

1 b2
2

]T
, C =

[
c1 c2

]

to the equation n(z1,z2)=C[I−A1z1−A2z2]
−1 (B1z1 +B2z2),

we obtain:

(b1
1c1 +b2

1c2)z1 +(b1
2c1 +b2

2c2)z2 +(a10b2
1c2 +

+a11b1
1c2)z2

1 +(b2
2c1 −a10b2

2c2 +a02b1
2c2)z2

2 +

(b2
1c1 −a01b2

1c2 +a02b1
1c2 −a10b2

2c2 +a11b1
2c2)z1z2 =

= n(z1,z2) = b10z1 +b01z2 +b11z1z2.

After comparing the same power of the variables z1 and z2, we
get the set of equations:




b1
1c1 +b2

1c2 = b10

b1
2c1 +b2

2c2 = b01

a10b2
1c2 +a11b1

1c2 = 0
b2

2c1 −a10b2
2c2 +a02b1

2c2 = 0
b2

1c1 −a01b2
1c2 +a02b1

1c2 −a10b2
2c2 +a11b1

2c2 = b11.

After solving them, we receive the matrices

B1 =

[
b1

1

b1
2

]
=

[
b10/c1

b11/c1

]
, B2 =

[
b2

1

b2
2

]
=

[
b01/c1

0

]
, (21)

C =
[

c1 c2

]
=
[

c1 0
]
.

In paper [26, pp. 634-635], we can find consideration how
to determine one realization using the procedure proposed by
the author. The presented procedure does not give a minimal
realization. The order of realization obtained using the method
presented in this paper is 2, and is minimal among all possi-
ble realizations, while the order obtained in [26] is 4. Addi-
tionally, we have not one but a few minimal structures of the

Bull. Pol. Ac.: Tech. XX(Y) 2016 5
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Using the algorithm proposed in this paper, we can write the 
following state matrices which satisfy the characteristic poly-
nomial d(z1, z2). In Fig. 5, we have presented one of possible 
two-dimensional digraph realizations.

 

A1 = 

"
w(v1, v1) 1 

0
w(v1, v2) 1 

0

#
 = 

"
a10 

0
a11 

0

#
,

A2 = 

"
w(v1, v1) 2 

w(v2, v1) 2

w(v1, v2) 1 
0

#
 = 

"
a01 

1
a02 

0

#
.

 (20)

(b1
1c1 + b1

2c2)z1 + (b2
1c1 + b2

2c2)z2 + (a10b1
2c2 + 

+ a11b1
1c2)z1

2 + (b2
2c1 ¡ a10b2

2c2 + a02b2
1c2)z2

2 +
+ (b1

2c1 ¡ a01b1
2c2 + a02b1

1c2 ¡ a10b2
2c2 + a11b2

1c2)z1z2 = 
= n(z1, z2) = b10z1 + b01z2 + b11z1z2.

After comparing the same power of the variables z1 and z2, we 
get the set of equations:

<
>>
8

:

b1
1c1 + b1

2c2  = b10

b2
1c1 + b2

2c2  = b01

a10b1
2c2 + a11b1

1c2  = 0
b2

2c1 ¡ a10b2
2c2 + a02b2

1c2  = 0
b1

2c1 ¡ a01b1
2c2 + a02b1

1c2 ¡ a10b2
2c2 + a11b2

1c2  = b11.

After solving them, we receive the matrices

 
B1 = 

"
b1

1

b2
1

#
 = 

"
b10/c1

b11/c1

#
, B2 = 

"
b1

2

b2
2

#
 = 

"
b01/c1

0

#
,

C = 
h
c1 c2

i
 = 

h
c1 0

i
.

 (21)

In paper [26, pp. 634‒635], we can find consideration how 
to determine one realization using the procedure proposed by 
the author. The presented procedure does not give a minimal 
realization. The order of realization obtained using the method 
presented in this paper is 2, and is minimal among all possible 
realizations, while the order obtained in [26] is 4. Additionally, 
we have not one but a few minimal structures of the two-di-
mensional digraph (see Table 1) corresponding to the charac-

Fig. 5. Two-dimensional digraph D(2) corresponding to (20)
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that next step in optimization of algorithm is moving the last
stage of the algorithm from MATLAB MuPAD environment
into a CUDA C code run parallel on GPU device, both due to
improved speed of such solution and the ability to analyze the
real computational complexity of the function.

4. Comparison and Discussion
We compared the effectiveness of the proposed method with
the existing ones in Subsection 4.2 on all examples used in
papers showing those methods and presented the workings in-
detail on two examples presented in Subsection 4.1.

4.1. Examples

EXAMPLE 3. Consider the following two-dimensional
transfer function used in papers [23] and [24]:

G(z1,z2) =
α1z1 +α2z2

1−β1z1 −β2z2
. (16)

Using algorithm proposed in this paper we can write the fol-
lowing state matrices which satisfy the characteristic polyno-
mial d(z1,z2) = 1−β1z1 −β2z2. In the Figure 4, we have pre-
sented its two-dimensional digraph.

A1 =
[

w(v1,v1)A1

]
=
[

β1

]
, (17)

A2 =
[

w(v1,v1)A2

]
=
[

β2

]
.

v1

w(v1,v1)A1 z1 w(v1,v1)A2 z2

Fig. 4. Two-dimensional digraph D(2) corresponding to (17)

Substituting state matrices (17) and matrices

B1 =
[
b1

1
]
, B2 =

[
b2

1
]
, C = [c1]

to the equation n(z1,z2)=C[I−A1z1−A2z2]
−1 (B1z1 +B2z2),

we obtain: c1b1
1z1 + c1b2

1z2 = n(z1,z2) = α1z1 +α2z2. After
comparing the same power of the variables z1 and z2, we get
the set of the equations: c1b1

1 = α1, c1b2
1 = α2. After solving

them we receive the matrices

B1 =
[

b1
1

]
=
[

α1/c1

]
, B2 =

[
b2

1

]
=
[

α2/c1

]
, (18)

C1 =
[

c1

]
.

which satisfy the transfer function (16).
In paper [23, pp.207] and in paper [24, pp.III-292], we can

find a remark with information that the procedure proposed
does not give in general minimal realization. The order of the
obtained realization for our algorithm is 1, and it is minimal
among all possible, while the order obtained in [23] and [24]
is 2. Additionally, we have one minimal structure of the two-
dimensional digraph, but entries of the matrices B1, B2 depend
on the entry of the matrix C. Thus we have an infinite number
of realizations which satisfy the transfer function (16). Com-
parison between the algorithm proposed in this paper and algo-
rithms proposed in papers [23] and [24] is presented in Table
2.

EXAMPLE 4. Consider the following two-dimensional
transfer function used in paper [26]:

G(z1,z2) =
b10z1 +b01z2 +b11z1z2

1−a10z1 −a01z2 −a11z1z2 −a02z2
2
. (19)

Using algorithm proposed in this paper, we can write the
following state matrices which satisfy the characteristic poly-
nomial d(z1,z2). In the Figure 5, we have presented one of
possible two-dimensional digraph realizations.

A1 =

[
w(v1,v1)A1 0
w(v1,v2)A1 0

]
=

[
a10 0
a11 0

]
, (20)

A2 =

[
w(v1,v1)A2 w(v2,v1)A2

w(v1,v2)A2 0

]
=

[
a01 1
a02 0

]
.

v1
v2w(v1,v2)A1 z1

w(v1,v1)A1 z1

w(v1,v1)A2 z2

w(v2,v1)A2 z2

w(v1,v2)A2 z2

Fig. 5. Two-dimensional digraph D(2) corresponding to (20)

Substituting state matrices (20) and matrices

B1 =
[

b1
1 b1

2

]T
, B2 =

[
b2

1 b2
2

]T
, C =

[
c1 c2

]

to the equation n(z1,z2)=C[I−A1z1−A2z2]
−1 (B1z1 +B2z2),

we obtain:

(b1
1c1 +b2

1c2)z1 +(b1
2c1 +b2

2c2)z2 +(a10b2
1c2 +

+a11b1
1c2)z2

1 +(b2
2c1 −a10b2

2c2 +a02b1
2c2)z2

2 +

(b2
1c1 −a01b2

1c2 +a02b1
1c2 −a10b2

2c2 +a11b1
2c2)z1z2 =

= n(z1,z2) = b10z1 +b01z2 +b11z1z2.

After comparing the same power of the variables z1 and z2, we
get the set of equations:




b1
1c1 +b2

1c2 = b10

b1
2c1 +b2

2c2 = b01

a10b2
1c2 +a11b1

1c2 = 0
b2

2c1 −a10b2
2c2 +a02b1

2c2 = 0
b2

1c1 −a01b2
1c2 +a02b1

1c2 −a10b2
2c2 +a11b1

2c2 = b11.

After solving them, we receive the matrices

B1 =

[
b1

1

b1
2

]
=

[
b10/c1

b11/c1

]
, B2 =

[
b2

1

b2
2

]
=

[
b01/c1

0

]
, (21)

C =
[

c1 c2

]
=
[

c1 0
]
.

In paper [26, pp. 634-635], we can find consideration how
to determine one realization using the procedure proposed by
the author. The presented procedure does not give a minimal
realization. The order of realization obtained using the method
presented in this paper is 2, and is minimal among all possi-
ble realizations, while the order obtained in [26] is 4. Addi-
tionally, we have not one but a few minimal structures of the
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Table 1 
Potential and real number of the digraph structures

Characteristic Polynomial Grow Prune
Solutions

Potential Real

Second Fornasini-Marchesini model

1 + a20z2
2 + a11z1z2 + a10z1 + a01z2 

(a) 1 1 4 2

1 ¡ a5z1
2z2 ¡ a4z2

2 ¡ a3z1
2 ¡ a2z2 ¡ a1z1 

(b) 1 1 81 2

1 + d21z1
2z2 + d30z1

3 + d11z1z2 + d10z1 + d01z2 
(c) 1 1 54 4

1 ¡ β1z1 ¡ β2z2 
(d)(h) 1 1 1 1

1 + a12z1z2
2 + a11z1z2 + a01z2 

(e) 1 1 18 6

1 + z1
2z2

2 + z1z2 
(f) 3 2 24 8

1 ¡ d22z1
2z2

2 ¡ d12z1z2
2 ¡ d21z1

2z2 ¡ d11z1z2 ¡ d10z1 ¡ d01z2 
(g) 3 2 129 024 84

General Model

1 + z1
2z2

2 + z1z2 
(f) 1 1 3 2

1 ¡ d22z1
2z2

2 ¡ d12z1z2
2 ¡ d21z1

2z2 ¡ d11z1z2 ¡ d10z1 ¡ d01z2 
(g) 1 1 8 1

Examples from papers: (a) [26, pp. 634–635]. (b) [25, pp. 1463]. (c) [25, pp. 1461]. (d) [24, pp. III–292]. (e) [26, pp. 637]. (f) [22, pp. 636]. (g) [27, pp. 6–7]. (h) [23, pp. 207].

Substituting state matrices (20) and matrices

B1 = 
h
b1

1b2
1
iT

, B2 = 
h
b1

2b2
2
iT

, C = 
h
c1c2

i

to the equation n(z1, z2) = C[I ¡ A1z1 ¡ A2z2]
–1(B1z1 + B2z2), 

we obtain:
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teristic polynomial n(z1, z2), and all structure entries of the 
matrices B1 and B2 depend on the entry of the matrix C. Thus 
we have an infinite number of realizations which satisfy the 
transfer function (20). A comparison between the algorithm 
proposed in this paper and the algorithm proposed in paper 
[26] is presented in Table 2.

Remark 5. Using algorithm presented in this paper, we can 
obtain another digraph structure presented in Fig. 6. Using the 
digraph structure presented in Fig. 6 we can write the matrices

 

A1 = 

"
 0 0
 w(v1, v2) 1

 w(v2, v2) 1

#
 = 

"
 0 0
 a11 a10

#
,

A2 = 

"
 0 w(v2, v1) 2

 w(v1, v2) 2
 w(v2, v2) 2

#
 = 

"
 0 1
 a20 a01

#
,

B1 = 

"
b1

1

b2
1

#
 = 

"
0

a20b10
a01c1

#
, B2 = 

"
b1

2

b2
2

#
 = 

" b01
c1

0

#
,

C = 
h
c1 c2

i
 = 

h
c1

a01
a20

c1
i
.

 (22)

The coefficient must additionally satisfy the following con-
dition,

a20b10
a10

 +  a01a11b01
a20

 ¡ a10b01 = b11

to satisfy the transfer function (19). The obtained set of reali-
zations satisfies the minimality condition, and we can see that 
it is minimal among all possible realizations.

Remark 6. It should be noted that the algorithm proposed in 
this paper gives 4 potential realizations, but of those only 2 
realizations, presented in Fig. 5 and Fig. 6, can be achieved 
(see the first row in Table 1). Furthermore, it should be re-
membered that we can obtain at least two additional solutions 
by the re-enumeration of the vertices in the digraphs, which is 
equivalent to the transposition of the state matrices.

4.2. Comparison with state-of-the-art algorithms. In Table 1, 
we presented a potential and real number of digraph structures 
for examples considered in the state-of-the-art papers: [22–27]. 
Potential solutions hold the solutions that can be created by 
the algorithm, while real solutions hold only solutions that be-
long to K1 class. It should be noted that the potential and real 
solutions do not contain realizations that we can receive by 
re-encumbering the vertices in the digraphs. This operation is 
very simple, but it is not included in the algorithm, as it leads 
to unnecessary operations and can be obtained by transposition 
of A matrices after the algorithm is finished.

Fig. 6. Two-dimensional digraph D(2) corresponding to (20)

Table 2 
Comparison the size of the realization and the number of the solutions

Characteristic Polynomial Size 
(n×n)

Solution 
(number)

Proposed algorithm

Size Solution

Second Fornasini-Marchesini model

1 + a02z2
2 + a11z1z2 + a10z1 + a01z2 

(a) 4 1 2 4

1 ¡ a5z1
2z2 ¡ a4z2

2 ¡ a3z1
2 ¡ a2z2 ¡ a1z1 

(b) 4 1 3 2

1 + d21z1
2z2 + d30z1

3 + d11z1z2 + d10z1 + d01z2 
(c) 3 1 3 12

1 ¡ β1z1 ¡ β2z2 
(d)(h) 2 1 1 1

1 + a12z1z2
2 + a11z1z2 + a01z2 

(e) 3 1 3 6

1 + z1
2z2

2 + z1z2 
(f) – 1 4 8

1 ¡ d22z1
2z2

2 ¡ d12z1z2
2 ¡ d21z1

2z2 ¡ d11z1z2 ¡ d10z1 ¡ d01z2 
(g) – 1 4 84

General Model

1 + z1
2z2

2 + z1z2 
(f) 2 1 2 2

1 ¡ d22z1
2z2

2 ¡ d12z1z2
2 ¡ d21z1

2z2 ¡ d11z1z2 ¡ d10z1 ¡ d01z2 
(g) 2 1 2 2

Examples from papers: (a) [26, pp. 634–635]. (b) [25, pp. 1463]. (c) [25, pp. 1461]. (d) [24, pp. III–292]. (e) [26, pp. 637]. (f) [22, pp. 636]. (g) [27, pp. 6–7]. (h) [23, pp. 207].
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two-dimensional digraph (see Table 1) corresponding to the
characteristic polynomial n(z1,z2), and all structure entries of
the matrices B1 and B2 depend on the entry of the matrix C.
Thus we have an infinite number of realizations which satisfy
the transfer function (20). Comparison between the algorithm
proposed in this paper and the algorithm proposed in paper
[26] is presented in Table 2.

REMARK 5. Using algorithm presented in this paper, we
can obtain another digraph structure presented in Figure 6. Us-
ing the digraph structure presented in Figure 6 we can write the
matrices

A1 =

[
0 0

w(v1,v2)A1 w(v2,v2)A1

]
=

[
0 0

a11 a10

]
,

A2 =

[
0 w(v2,v1)A2

w(v1,v2)A2 w(v2,v2)A2

]
=

[
0 1

a20 a01

]
, (22)

B1 =

[
b1

1

b1
2

]
=

[
0

a20b10
a01c1

]
,B2 =

[
b2

1

b2
2

]
=

[
b01
c1

0

]
,

C =
[

c1 c2

]
=
[

c1
a01
a20

c1

]
.

The coefficient must additionally satisfy the following con-
dition,

a20b10

a10
+

a01a11b01

a20
−a10b01 = b11

to satisfy the transfer function (19). The obtained set of real-
izations satisfies the minimality condition, and we can see that
it is minimal among all possible realizations.

v1

v2
w(v1,v2)A1 z1

w(v2,v2)A1 z1

w(v2,v2)A2 z2

w(v2,v1)A2 z2

w(v1,v2)A2 z2

Fig. 6. Two-dimensional digraph D(2) corresponding to (20)

REMARK 6. It should be noted that the algorithm proposed
in this paper gives 4 potential realizations, but of those only
2 realizations, presented in Figures 5 and Figure 6, can be
achieved (see the first row in Table 1). Furthermore, it should
be remembered that we can obtain at least two additional so-
lutions by the re-enumeration of the vertices in the digraphs,
which is equivalent to the transposition of the state matrices.

4.2. Comparison with state-of-the-art algorithms In Table
1, we presented a potential and real number of digraph struc-
tures for examples considered in the state-of-the-art papers:
[22, 23, 24, 25, 26, 27]. Potential solutions hold the solutions
that can be created by the algorithm, while real solutions hold
only solutions that belong to K1 class. It should be noted that
the potential and real solutions do not contain realizations that
we can receive by re-encumbering the vertices in the digraphs.
This operation is very simple, but it is not included in the algo-
rithm, as it leads to unnecessary operations and can be obtained
by transposition of A matrices after the algorithm is finished.

In Table 2, we presented the comparison of the size of the
realization and the number of the solutions for the examples
presented in the papers considered in Table 1. After looking
at the table, we can say that the algorithm proposed in this
paper gives more realizations and additionally all of them are
minimal among all possible and thus can be proven as supe-
rior on grounds of achieved solutions to other state-of-the-art
methods.

In case of computational complexity, compared algorithms
tend to be proposed in form unsuitable for direct computer im-
plementation, not optimized in any way and presented in a way
that makes estimation hard (text or incomplete set of steps in-
stead of pseudo-code). Moreover, as they were not intended
for computer implementation, their complexity is never men-
tioned. Authors tried to the best of their abilities to evaluate
the complexity and fastest of the compared algorithms have
quadratic complexity of T(V) = O(n2) [24, 25] , at least over-
quadratic complexity T(V) = O(n2.373) [22, 23, 27] or cubic
complexity T(V) = O(n3) [26]. In addition all of the algo-
rithms construct sparse matrices of large size and perform large
number of additional operations, that for n≤ 5 exceed the num-
ber of operations resulting from complexity estimation. De-
spite being able to obtain only single, often non-minimal solu-
tion, compared algorithms complexity is high enough that their
direct computer implementation would be working slower then
second and subsequent GPGPU executions of proposed algo-
rithm, that generates a set of minimal solutions.

REMARK 7. In the paper only some of the experimental re-
sults obtained were presented in Tables 1 and 2. Interested
reader can get more experimental results from dataset pre-
sented at author’s page 2.

5. Concluding remarks

This paper presents the method for finding a set of realizations
of 2-D system, that is based on the multi-dimensional digraph
theory. Presented method is shown to be superior to all other
state-of-the-art solutions the authors know of, as shown in Sec-
tion 4. The method gives as a result a set of realizations of 2-D
dynamic system, both in the form of digraph and matrices rep-
resentations.

Presented method differs from other methods, that are capa-
ble of finding only a few of existing realizations in that it is able
to find a large set of possible realizations restricted by class
K1. Moreover, the obtained solutions that are always minimal
in terms of state matrices size and as presented in Table 2 of
the same or smaller size then obtained by other methods.

Many new realizations in form of [A,B,C,D] matrices ob-
tained using both the proposed method and attached MATLAB
functions allow for more detailed examination of 2-D system
dynamics. Moreover it allows possibilities of experimental
evaluation of many complex and still not solved theoretically
problems, like a calculation of the reachability index.

2http://nas.isep.pw.edu.pl/repo/?page_id=547
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In Table 2, we presented the comparison of the size of the 
realization and the number of the solutions for the examples 
presented in the papers considered in Table 1. After looking 
at the table, we can say that the algorithm proposed in this 
paper gives more realizations and additionally all of them are 
minimal among all possible and thus can be proven as supe-
rior on grounds of achieved solutions to other state-of-the-art 
methods.

In case of computational complexity, compared algorithms 
tend to be proposed in form unsuitable for direct computer 
implementation, not optimized in any way and presented in 
a way that makes estimation hard (text or incomplete set of 
steps instead of pseudo-code). Moreover, as they were not 
intended for computer implementation, their complexity is 
never mentioned. Authors tried to the best of their abilities 
to evaluate the complexity and fastest of the compared 
algorithms have quadratic complexity of T(V) = O(n2) 
[24, 25], at least over-quadratic complexity T(V) = O(n2.373) 
[22, 23, 27] or cubic complexity T(V) = O(n3) [26]. In 
addition all of the algorithms construct sparse matrices of 
large size and perform large number of additional operations, 
which for n ∙ 5 exceed the number of operations resulting 
from complexity estimation. Despite being able to obtain 
only single, often non-minimal solution, the complexity of 
the compared algorithms is so high that their direct computer 
implementation would be working slower then second and 
subsequent GPGPU executions of proposed algorithm, gen-
erating a set of minimal solutions.

Remark 7. In the paper only some of the experimental results 
obtained were presented in Tables 1 and 2. Interested reader 
can get more experimental results from dataset presented on 
the author’s webpage2.

5. Concluding remarks

This paper presents a method for finding a set of realizations of 
2-D system, which is based on the multi-dimensional digraph 
theory. Presented method is shown to be superior to all other 
state-of-the-art solutions the authors know of, as demonstrated 
in Section 4. The method gives as a result a set of realizations of 
2-D dynamic system, both in the form of digraph and matrices 
representations.

Presented method differs from other methods, which are 
capable of finding only a few of existing realizations in that it is 
able to find a large set of possible realizations restricted by class 
K1. Moreover, the obtained solutions that are always minimal in 
terms of state matrices size and as presented in Table 2 of the 
same or smaller size then obtained by other methods.

Many new realizations in form of [A, B, C, D] matrices 
obtained using both the proposed method and attached 
MATLAB functions allow for more detailed examination 
of 2-D system dynamics. Moreover it allows possibilities 

2 https://cloud.ee.pw.edu.pl/nextcloud/index.php/s/ssq7ddd7ppTJDnq

of experimental evaluation of many complex and still not 
theoretically solved problems, such as the calculation of the 
reachability index.
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