PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tailoring halide double perovskite materials Rb2MgSnY6 (Y = I, Br, Cl) for enhanced optoelectronic and solar cells through first-principles study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aiming to enhance halide double perovskites technological applications, this research examines optoelectronic, structural, and mechanical properties of Rb₂MgSnY₆ (Y = I, Br, Cl) compounds via the first-principles method, evaluating their suitability for prospective applications. The optimised structural parameters and cell volumes expand proportionally with the size of the halogen atoms, and the computed tolerance factors, along with positive phonon frequencies in band structures, confirm both structural and dynamical stability. Electronic band structure analysis reveals that all examined compounds exhibit semiconducting characteristics, with a bandgap of 1.39, 1.95, and 2.45 eV, respectively, for Rb₂MgSnI₆, Rb₂MgSnBr₆, and Rb₂MgSnCl₆. Mechanical analysis confirmed stability criteria and also demonstrated anisotropic and ductile behaviour. A range of optical parameters is analysed, such as dielectric function, absorption rate, optical response, and index of refraction for Rb₂MgSnY₆ (Y = I, Br, Cl) across the energy range of 0–40 eV. The results of the optical analysis reveal that these materials exhibit high optical conductivity, low reflectivity, and strong absorption ability. Overall, the structural, thermodynamic, and mechanical robustness emphasises the superb prospects of these compounds for deployment in solar cells, photodetectors, light-emitting diodes (LEDs), and various additional optoelectronic appliances.
Rocznik
Strony
art. no. e155902
Opis fizyczny
Bibliogr. 45 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Physics, Qilu Institute of Technology, Jinan 250200, Shandong, PR China
autor
  • Institute of Physics, Gomal University, Dera Ismail Khan 29220, Khyber Pakhtunkhwa, Pakistan
  • Research Laboratory Physics and Sciences for Engineers (LRPSI), Poly-disciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
  • School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
autor
  • Department of Physics, University of Science and Technology Bannu, Bannu 28100, Pakistan
autor
  • Department of Physics, Qilu Institute of Technology, Jinan 250200, Shandong, PR China
Bibliografia
  • [1] Dar, S. A. & Want, B. Direct band gap double perovskite halide Cs2ScInCl6 for optoelectronic applications – A first principle study. Comput. Condens. Matter 33, e00736 (2022). https://doi.org/10.1016/j.cocom.2022.e00736
  • [2] Hussain, M., Rashid, M., Ali, A., Bhopal, M. F. & Bhatti, A. S. Systematic study of optoelectronic and transport properties of cesium lead halide (Cs2PbX6; X = Cl, Br, I) double perovskite for solar cell applications. Ceram. Int. 46, 21378–21387 (2020). https://doi.org/10.1016/j.ceramint.2020.05.235
  • [3] Aziz, A. et al. Theoretical investigation of X2NaIO6 (X = Pb, Sr) double perovskitefor thermoelectric and optoelectronic applications. Phys. B: Condens. Matter 630, 413694 (2022). https://doi.org/10.1016/j.physb.2022.413694
  • [4] Murtaza, G. & Ahmad, I. First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M = Cl, Br, I). Phys. B: Condens. Matter 406, 3222–3229 (2011). https://doi.org/10.1016/j.physb.2011.05.028
  • [5] Mathew, N. P., Kumar, R. & Radhakrishnan, R. First principle study of lead free halide double perovskite Cs2AuBiX6 (X = Cl, Br). Mater. Today: Proc. 27, 561–564 (2020). https://doi.org/10.1016/j.matpr.2019.12.022
  • [6] Mehed, A. M., Al-Qaisi, S. & Ali, M. A. Study of optoelectronic and thermoelectric properties of double perovskite Rb2AgBiX6 (X = Br, I): by DFT approach. Eur. Phys. J. Plus 137, 990 (2022). https://doi.org/10.1140/epjp/s13360-022-03222-4
  • [7] Alotaibi, N. H. et al. DFT study of double perovskites Cs2AgBiX6 (X = Cl, Br): An alternative of hybrid perovskites. J. Solid State Chem. 313, 123353 (2022). https://doi.org/10.1016/j.jssc.2022.123353
  • [8] Mathew, N. P., Kumar, N. R. & Radhakrishnan, R. First principle study of the structural and optoelectronic properties of direct bandgap double perovskite Cs2AgInCl6. Mater. Today: Proc. 33, 1252–1256 (2020). https://doi.org/10.1016/j.matpr.2020.03.489
  • [9] Al-Qaisi, S. et al. A theoretical investigation of the lead-free double perovskite halides Rb2XCl6 (X = Se, Ti) for optoelectronic and thermoelectric applications. J. Comput. Chem. 44, 1690–1703 (2023). https://doi.org/10.1002/jcc.27119
  • [10] Manzoor, M. et al. DFT study of electronic, optical, and elastic properties of double perovskites Rb2YAgX6 (X = Br, I) compounds for optoelectronic device applications. Phys. Scr. 98, 035703 (2023). https://doi.org/10.1088/1402-4896/acae0e
  • [11] Yaseen, M., Aldaghfag, S. A., Zahid, M. & Misbah. Physical characteristics of X2NaMoBr6 (X = Rb, K): A DFT study. Mater. Sci. Semicond. Process. 147, 106760 (2022). https://doi.org/10.1016/j.mssp.2022.106760
  • [12] Albalawi, H. et al. Study of new double perovskite halides Rb2Ti (Cl/Br)6 for solar cells and thermoelectric applications. Mater. Today Commun. 32, 104106 (2022). https://doi.org/10.1016/j.mtcomm.2022.104106
  • [13] Manzoor, M. et al. Probing direct bandgap of double perovskite Rb2LiTlX6 (X = Cl, Br) and optoelectronic characteristics for solar cell applications: DFT calculations. J. Mater. Res. Technol. 18, 4775–4785 (2022). https://doi.org/10.1016/j.jmrt.2022.04.073
  • [14] Haq, A. U., Mustafa, G. M., Amin, M., Ramay, S. M. & Mahmood, A. Ab-initio study of opto-electronic and thermoelectric properties of direct bandgap double perovskites Rb2XGaBr6 (X = Na, K). Int. J. Energy Res. 45, 9241–9251 (2021). https://doi.org/10.1002/er.6455
  • [15] McClure, E. T., Ball, M. R., Windl, W. & Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016). https://doi.org/10.1021/acs.chemmater.5b04231
  • [16] Aldaghfag, S. A. et al. Investigation of electronic, optical and thermoelectric features of X2ScAgCl6 (X = K, Na) double perovskites for renewable energy applications. J. Solid State Chem. 312, 123179 (2022). https://doi.org/10.1016/j.jssc.2022.123179
  • [17] Mahmud, S., Ali, M. A., Hossain, M. M. & Uddin, M. M. DFT aided prediction of phase stability, optoelectronic and thermoelectric properties of A2AuScX6 (A = Cs, Rb; X= Cl, Br, I) double perovskites for energy harvesting technology. Vacuum 221, 112926 (2024). https://doi.org/10.1016/j.vacuum.2023.112926
  • [18] Blaha, P. et al. WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. (Techn. Universitat, 2019).
  • [19] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  • [20] Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401
  • [21] Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  • [22] Usman,T. et al. First-principles study of structural, electronic, optical and thermoelectric properties of rare earth based perovskites XAlO3 (X = Sm, Eu, Gd). Comp. Theor. Chem. 1235, 114567 (2024). https://doi.org/10.1016/j.comptc.2024.114567
  • [23] Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947). https://doi.org/10.1103/PhysRev.71.809
  • [24] Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  • [25] Jamal, M., Bilal, M., Ahmad, I. & Jalali-Asadabadi, S. IRelast package. J. Alloys Compd. 735, 569–579 (2018). https://doi.org/10.1016/j.jallcom.2017.10.139
  • [26] Segall, M. D. et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002). https://doi.org/10.1088/0953-8984/14/11/301
  • [27] Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. (Crystalline Materials) 220, 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
  • [28] Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides andhalides. Sci. Adv. 5, eaav0693 (2019). https://doi.org/10.1126/sciadv.aav0693
  • [29] Al-Humaidi, J. Y. et al. First-principle insight into the structural, electronic, elastic and optical properties of Cs-based double perovskites Cs2XCrCl6 (X = K, Na). RSC Adv. 13, 20966–20974 (2023). https://doi.org/10.1039/D3RA03706A
  • [30] Sajjad, A. et al. Exploring double perovskites Cs2AgSbX6 (X = Cl, Br, and I) as promising optoelectronic and thermoelectric materials: a first-principle study. Phys. Chem. Chem. Phys. 27, 4880–4891 (2025). https://doi.org/10.1039/D4CP04662E
  • [31] Kraska, T. Stability limits of pure substances: An investigation based on equations of state. Ind. Eng. Chem. Res. 43, 6213–6221 (2004). https://doi.org/10.1021/ie049720v
  • [32] Nakajima, T. & Sawada, K. Discovery of Pb-free perovskite solar cells via high throughput simulation on the K computer. J. Phys. Chem. Lett. 8, 4826–4831 (2017). https://doi.org/10.1021/acs.jpclett.7b02203
  • [33] Archi, M. et al. The effect of doping/dual-doping with nitrogen and silicon on the structural, electronic, and optical properties of graphene: First-principles study. J. Nanopart. Res. 26, 138 (2024). https://doi.org/10.1007/s11051-024-06056-6
  • [34] Afaq, A., Bakar, A., Anwar, S., Anwar, W. & Aleem, F. E. DFT study of SmXO3 (X = Al and Co) for elastic, mechanical and optical properties. Int. J. Mod. Phys. B 32, 1850362 (2018). https://doi.org/10.1142/S0217979218503629
  • [35] Usman, T., Murtaza, G., Luo, H. & Mahmood, A. GGA and GGA+U study of rare Earth-based perovskites in cubic phase. J. Supercond. Nov. Magn. 30, 1389–1396 (2017). https://doi.org/10.1007/s10948-016-3953-9
  • [36] Ahmed, M., Bakar, A., Quader, A., Ahmad, R. A. & Ramay, S. M. First-principles calculations to investigate structural, elastic, mechanical, electronic and optical characteristics of RbSrX3 (X = Cl,Br). Chem. Phys. 581, 112260 (2024). https://doi.org/10.1016/j.chemphys.2024.112260
  • [37] Rahman, N. et al. Probing the physical properties of M2LiCeF6 (M = Rb and Cs) double perovskite compounds for prospective high-energy applications employing the DFT framework. RSC Adv. 13, 15457–15466 (2023). https://doi.org/10.1039/D3RA01451G
  • [38] Israr, N. et al. Exploring the structural, mechanical, and optical properties of K2InGaX6 (X = Cl, Br or I) compounds be density functional theory. J. Inorg. Organomet. Polym. Mater. (2025). https://doi.org/10.1007/s10904-025-03731-6
  • [39] Yang, Y., Lu, H., Yu, C. & Chen, J. M. First-principles calculations of mechanical properties of TiC and TiN. J. Alloys Compd. 485, 542−547 (2009). https://doi.org/10.1016/j.jallcom.2009.06.023
  • [40] Pugh, S. F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil. Mag. 45, 823–843 (1954). https://dx.doi.org/10.1080/14786440808520496
  • [41] Noor, N. A. et al. Analysis of direct band gap A2ScInI6 (A = Rb, Cs) double perovskite halides using DFT approach for renewable energy devices J. Mater. Res. Technol. 13, 2491–2500 (2021). https://doi.org/10.1016/j.jmrt.2021.05.080
  • [42] Shakeel, S., Song, P., Alsalmah, H. A., Murtaza, G. & Huang, T. Investigation of pressure-dependent electronic and optical properties of double perovskites Cs2AgXY6 (X = Bi, In; Y= Cl, Br). J. Inorg. Organomet. Polym. Mater. 34, 1040–1054 (2024). https://doi.org/10.1007/s10904-023-02888-2
  • [43] Khan, N. et al. Detail computational study about the structural, electronic, optical and mechanical properties of RbVX3 (Cl, Br, I) halide perovskite materials. RSC Adv. 13, 22958–22965 (2023). https://doi.org/10.1039/D3RA03615D
  • [44] Cahill, D. G., Watson, K. & Pohl, R. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131 (1992). https://doi.org/10.1103/PhysRevB.46.6131
  • [45] Shah, S. H. et al. uniaxial strain engineering of electronic, elastic and optical properties of halide double perovskites K2NaTIX6 (X = I, Br, and Cl): A DFT insight. J. Inorg. Organomet. Polym. Mater. 35, 3665–3681 (2025). https://doi.org/10.1007/s10904-024-03484-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3482875-98e3-4bb1-8ef3-4827738db39c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.