PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Friction films analysis and tribological properties of composite antifriction self-lubricating material based on nickel alloy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article analyzes the composition and distribution of chemical elements in friction films and their effect on the tribological properties of the self-lubricating, high-temperature antifriction composite based on EP975 powder nickel alloy with CaF2 solid lubricant. Analysis of the chemical elements by energy-dispersive spectroscopy (EDS) showed their uniform distribution, on both the composite’s surface and the counterface’s surface. The alloying elements’ uniform distribution leads to a uniform distribution of the corresponding phases and structural elements in the antifriction film. This ensures high tribological properties at high temperatures. Analysis of the material’s tribological properties, by means of metallographic and micro-X-ray research confirmed the correctness of the technology for producing the composite. Solid lubricant CaF2, alloying elements, and their corresponding phases form the continuous antiscoring film. The film influences the antifriction properties formation during the friction process and provides a self-lubricating mode under the action of high temperature and oxygen. Antiscoring, self-lubricating CaF2 films minimize wear of the friction pairs and defend the contact surfaces against intensive wear. The dense antifriction films have smooth microtopography, which stabilizes the high-temperature friction unit operation. Thus, the self-lubrication mode is realized for a long exploitation time. Tribological properties analysis allowed us to determine the ranges of rational exploitation modes for the material being studied: a load up to 5.0 MPa, a slide speed from 0.3 to 1.0 m/s, a temperature up to 800°C, in the air. The results obtained opened the opportunity to control the antifriction film formation and the composite’s tribological properties by the choice of the initial ingredients while taking into account the operating conditions.
Wydawca
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Wrocław University of Science and Technology Wrocław, Poland
autor
  • Department of Light Elements Engineering, Foundry and Automation, Wroclaw University of Science and Technology Wroclaw, Poland
autor
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Kyiv, Ukraine
autor
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Kyiv, Ukraine
  • National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” Kyiv, Ukraine
  • Department of Environmental Engineering and Mechanical Engineering, Vasile Alecsandri University of BacauBacau, Romania
autor
  • Department of Mechanics, Materials Science and Biomedical Engineering, Wroclaw University of Science and Technology Wroclaw, Poland
  • Department of Mechanics, Materials Science and Biomedical Engineering, Wroclaw University of Science and Technology Wroclaw, Poland
  • Department of Mechanics, Materials Science and Biomedical Engineering, Wroclaw University of Science and Technology Wroclaw, Poland
Bibliografia
  • [1] Yi XS’ Du S, Zhang L, editors. Composite materials engineering. Volume 1, Fundamentals of composite materials. Beijing: Springer; Chemical Industry Press Singapore, 2018.
  • [2] Olaleye K, Roik T, Kurzawa A, Gavrysh O, Vit-siuk I, Jamroziak K. Structure formation in antifriction composites with a nickel matrix and its effect on properties. Materials. 2022;15(9):3404. doi: 10.3390/ ma15093404
  • [3] Cheng J, Zhen J, Zhu S, Yang J, Ma J, Li W, et al. Friction and wear behavior of Ni-based solid-lubricating composites at high temperature in a vacuum environment. Mater Des. 2017;122:405-13. doi: 10.1016/ j.matdes.2017.03.030
  • [4] Neale MJ. Tribology Handbook. 2nd edition. Butterworth-Heinemann: Elsevier Ltd.; 1996.
  • [5] Samal PK, Newkirk JW, editors. Powder metallurgy. Vol. 7. New York: ASM International; 2015.
  • [6] Jamroziak K, Roik T. Structure and properties of the new antifriction composite materials for high-temperature friction units. In: Abdel-Wahab M, editor. Proceedings of the 7th International Conference on Fracture Fatigue and Wear. Singapore: Springer Singapore; 2019. p. 628-37.
  • [7] Attaei M, Calado LM, Taryba MG, Morozov Y, Shakoor RA, Kahraman R, et al. Autonomous selfhealing in epoxy coatings provided by high efficiency isophorone diisocyanate (IPDI) microcapsules for protection of carbon steel. Prog Org Coatings. 2020;139:105445. doi: 10.1016/j.porgcoat.2019.105445
  • [8] Dangsheng X. Lubrication behavior of Ni-Cr-based alloys containing MoS2 at high temperature. Wear. 2001;251(1):1094-9. doi: 10.1016/S0043-1648(01)00 803-1
  • [9] Zhu S, Cheng J, Qiao Z, Yang J. High temperature solid-lubricating materials: a review. Tribol Int. 2019 May;133:206-23. doi: 10.1016/j.triboint.2018.12.037
  • [10] Adamov AA, Kamenskikh AA, Pankova AP. Influence analysis of the antifriction layer materials and thickness on the contact interaction of spherical bearings elements. Lubricants. 2022;10(2):1-13. doi: 10.3390/lubri-cants10020030
  • [11] Wu G, Xu C, Xiao G, Yi M, Chen Z. Structure design of Al2 O3/TiC/CaF2 multicomponent gradient self-lubricating ceramic composite and its tribological behaviors. Ceram Int. 2018;44(5):5550-63. doi: 10. 1016/j.ceramint.2017.12.199
  • [12] Mohan S, Anand A, Arvind Singh R, Jayalak-shmi S, Chen X, Konovalov S. Friction and wear study of Fe-Cu-C-CaF2 self-lubricating composite at high speed and high temperature. IOP Conf Ser Mater Sci Eng. 2020;834(1):012010. doi: 10.1088/1757-899X/834/1/012010
  • [13] Fangyi Zhai BH, Mi G. Effect of MoS2 content on anti-friction and wear-resistance of nickel-based alloy cladding layer. Ferroelectrics. 2023;607(1):117-25. doi: 10.1080/00150193.2023.2198379
  • [14] Ramesh CS, Keshavamurthy R, Channabasappa BH, Pramod S. Friction and wear behavior of Ni-P coated Si3N4 reinforced Al6061 composites. Tribol Int. 2010;43(3):623-34. doi: 10.1016/j.triboint.2009.0 9.011
  • [15] Buketov AV, Brailo M, Sapronov OO, Kruglyj DG, Appazov ES, Dulebova L, et al. Nanofilled antifriction polymeric composite materials for parts of friction unitsof sea and river transport. J Nano-Electron Phys. 2020;l2(5):l-6. doi: 10.21272/jnep.12(5).05025
  • [16] Lu Y, Yang X, Yang X, Xiao R, Wang P. Research of anti-friction performance of Ni60 alloy coating optimized by multiple high aluminum bronze. J Funct Mater. 2016;47(1):1097-101. doi: 10.3969/j.issn.1001-9731.2016.01.020
  • [17] Changchuan W, Wang R, Peng C, Feng Y, Wei X. Effects of hBN surface plated nickel on properties of Ni-20Cr/hBN self-lubricating composites. Chinese J Mater Res. 2011;25(5):509-16.
  • [18] Bin C, Tan Y, Tang J, Tan H, Wang W. Research on friction and wear properties of CaF2/TiC/Ni-base alloy composite coatings at different temperatures. Acta Armamentarii. 2014;35(6):900-7. doi: 10.3969/j.issn. 1000-1093.2014.06.022
  • [19] Shekhar C, Wani MF, Seghal R. Fabrication and self-lubricating tribological characterisation of Cu-Ni/ TiC/CaF2 composite for railway switch slide baseplate. Wear 2023 August 15;526:204890. doi: 10.1016/j.wear. 2023.204890
  • [20] Roik TA, Vitsiuk I, Gavrysh OA. Wear resistant composite material based on nickel. Patent of Ukraine; 135075, 2019. p. 4.
  • [21] Tang S, Wang R, Liu P, Niu Q, Yang G, Liu W, et al. Preparation of WC-TiC-Ni3Al-CaF2 functionally graded self-lubricating tool material by microwave sintering and its cutting performance. High Temp Mater Process. 2020;39:45-53. doi: 10.1515/htmp-2020-0004
  • [22] Guo N, Chen Z, Xiao G, Li Q, Zhang S, Yi M, et al. Cutting performance and wear resistance of Al2O3/ TiC/CaF2@Al2O3 ceramic tools in dry machining of hardened steel. J Ceram Soc Japan. 2021;129(12):697-706. doi: 10.2109/jcersj2.21123
  • [23] Ji L, Chen Z, Guo R, Xu C, Guo N. Preparia-tion of nano-coating powder CaF2@ Al(OH)3 and its application in Al2O3/Ti(C,N) self-lubricating ceramic tool materials. Ceram Int. 2020;46:15949-57. doi: 10.1016/j.ceraint.2020.03.144
  • [24] Zhang Y, Chromik RR. Tribology of self-lubricating metal matrix composites. In: L. Menezes, K. Rohatgi, Omranie E, editors. Self-lubricating composites monograph. Berlin: Springer Nature; 2018. p. 33-73.
  • [25] Cai B, Tan Y, Tu Y, Wang X, Tan H. Tribological properties of Ni-base alloy composite coating modified by both graphite and TiC particles. Trans Nonferrous Met Soc China. 2011;21(11):2426-32. doi: 10.1016/S1003-6326(11)61031-5
  • [26] Li JL, Xiong DS. Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection. Wear 2008 Jul 3l;265(3-4):533-9. doi: 10.1016/j.wear.2007.09.005
  • [27] Kotkowiak M, Piasecki A, Kulka M. The influence of solid lubricant on tribological properties of sintered Ni-20%CaF2 composite material. Ceram Int. 2019. doi: 10.1016/j.ceramint.2019.05.262
  • [28] Naim Katea S, Tai CW, Ström P, Larsson PO, Vidarsson H, Westin G. Niobium carbide-Nickelniobium alloy composites from a nickel coated powder: microstructural development during sintering. Open Ceram. 2021;6:100096. doi: 10.1016/j.oceram.2021. 100096
  • [29] Kruzhanov VS. Modern manufacturing of powder-metallurgical products with high density and performance by press-sinter technology. Powder Metal Met Ceram. 2018;57(7):43l-46. doi: 10.1007/s11106-018-0002-1
  • [30] Ogbonna VE, Popoola PI, Popoola OM, Adeosun SO. A review on recent advances on improving polyimide matrix nanocomposites for mechanical, thermal, and tribological applications: challenges and recommendations for future improvement. J Thermoplast Compos Mater. 2023;36(2):836-65. doi: 10.1177/08927057211007904
  • [31] Ji Z, Zhang L, Xie G, Xu W, Guo D, Luo J, et al. Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction. 2020;8(5):813-46. doi: 10.1007/s40544-020-0401-4
  • [32] Atkinson HV, Davies S. Fundamental aspects of hot isostatic pressing: an overview. Metal Mater TransA. 2000;31(12):2981-3000. doi: 10.1007/s11661-000-0078-2
  • [33] Dempster I, Wallis R. Heat treatment metallurgy of nickel-base alloys. In: George E. Totten, editor. Heat treating of nonferrous alloys. 4th ed. ASM International; 2016. p. 399-425.
  • [34] Kluczyfiski J, Sniezek L, Grzelak K, Oziêbło A, Perkowski K, Torzewski J, et al. Hot isostatic pressing influence on the mechanical properties of selectively laser-melted 316L steel. Bull Polish Acad Sci Tech Sci. 2020;68(6):1413-24. doi: 10.24425/bpasts.2020. 135396
  • [35] Sniezek L, Kosturek R, Wachowski M, Kania B. Microstructure and residual stresses of AA2519 friction stir welded joints under different heat treatment conditions. Materials. 2020;13(4):834. doi: 10.3390/ma1304 0834
  • [36] Li Y, Zhu W, Li Q, Qiu S, Zhang J. Phase equilibria in the Nb-Ti side of the Nb-Si-Ti system at l2OO°C and its oxidation behavior. J Alloys Compd. 2017;704:311-21. doi: 10.1016/j.jallcom.2017.02.007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a347203e-fc61-4856-9753-932b0b490803
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.