PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of low frequency TE-electromagnetic wave in ternary plasma photonic crystal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the oblique incident of the electromagnetic waves with frequencies lower than plasma frequency in one dimensional ternary plasma photonic crystal has been investigated. The unit cell of crystal contains a plasma layer that is embedded in two different dielectric layers. Using the wave equation, Bloch theory, and boundary condition, the dispersion relation, the group velocity and the reflection relation of the structure have been obtained. Numerical results are presented in the form of dispersion curves. The dependence of photonic band gap characteristics on plasma frequency is discussed. One attempt has been made to show how the photonic band gap characteristic of a particular structure changes when the dielectric material of the unit cell is replaced by other dielectric materials or when the incident angle of the electromagnetic wave is changed. Results show that plasma layer characteristics has a significant effect on band gaps and wave propagation characteristics; also the results show that the proposed multi-layered structure can act as a tunable photonic crystal which can be controlled by the external parameters.
Czasopismo
Rocznik
Strony
457--470
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  • Department of Physics, Kerman Branch, Islamic Azad University, Kerman, Iran
autor
  • Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] YABLONOVITCH E., Inhibited spontaneous emission in solid-state physics and electronics, Physical Review Letters 58(20),1987, p. 2059.
  • [2] JOHN S., Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58(23), 1987, p. 2486.
  • [3] MIYAI E., OKANO M., MOCHIZUKI M., NODA S., Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide, Applied Physics Letters 81(20), 2002, p. 3729.
  • [4] PAINTER O., LEE R.K., SCHERER A., YARIV A., O’BRIEN J.D., DAPKUS P.D., KIM I., Two-dimensional photonic band-gap defect mode laser, Science 284(5421), 1999, pp. 1819–1821.
  • [5] MALIK A.K., MALIK H.K., STROTH U., Strong terahertz radiation by beating of spatial-triangular lasers in a plasma, Applied Physics Letters 99(7), 2011, article ID 071107.
  • [6] SINGH D., MALIK H.K., Enhancement of terahertz emission in magnetized collisional plasma, Plasma Sources Science and Technology 24(4), 2015, article ID 045001.
  • [7] HAPP T.D., KAMP M., FORCHEL A., GENTNER J.L., GOLDSTEIN L., Two dimensional photonic crystal coupled-defect laser diode, Applied Physics Letters 82(1), 2003, p. 4.
  • [8] SINGH D., MALIK H.K., Terahertz generation by mixing of two super-Gaussian laser beams in collisional plasma, Physics of Plasmas 21(8), 2014, article ID 083105.
  • [9] ZHANG HAI-FENG, MA LI, LIU SHAO-BIN, Defect mode properties of magnetized plasma photonic crystals, Acta Physica Sinica 58(2), 2009, pp. 1071–1076.
  • [10] MALIK A.K., MALIK H.K., STROTH U., Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field, Physical Review E 85(1), 2012, article ID 016401.
  • [11] HAI-FENG ZHANG, SHAO-BIN LIU, XIANG-KUN KONG, LIANG ZOU, CHUN-ZAO LI, WU-SHU QING, Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer, Physics of Plasmas 19(2), 2012, article ID 022103.
  • [12] MALIK H.K., MALIK A.K., Strong and collimated terahertz radiation by super-Gaussian lasers, Euro- physics Letters 100(4), 2012, article ID 45001.
  • [13] HAI-FENG ZHANG, SHAO-BIN LIU, XIANG-KUN KONG, BO-RUI BIAN, YI DAI, Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, Physics of Plasmas 19(11), 2012, article ID 112102.
  • [14] MALIK H.K., Terahertz radiation generation by lasers with remarkable efficiency in electron–positron plasma, Physics Letters A 379(43–44), 2015, pp. 2826–2829.
  • [15] MALIK H.K., MALIK A.K., Tunable and collimated terahertz radiation generation by femtosecond laser pulses, Applied Physics Letters 99(25), 2011, article ID 251101.
  • [16] BROWN E.R., MCMAHON O.B., PARKER C.D., Photonic-crystal antenna substrates, Lincoln Laboratory Journal 11(2), 1998, pp. 159–174.
  • [17] NOTOMI M., TAMAMURA T., OHTERA Y., HANAIZUMI O., KAWAKAMI S., Direct visualization of photonic band structure for three-dimensional photonic crystals, Physical Review B 61(11), 2000, p. 7165.
  • [18] JUGESSUR A.S., BAKHTAZAD A., KIRK A.G., WU L., KRAUSS T.F., DE LA RUE R.M., Compact and integrated 2-D photonic crystal super-prism filter-device for wavelength demultiplexing applications, Optics Express 14(4), 2006, pp. 1632–1642.
  • [19] SIGALAS M.M., CHAN C.T., HO K.M., SOUKOULIS C.M., Metallic photonic band-gap materials, Physical Review B 52(16), 1995, p. 11744.
  • [20] GUISHENG PAN, KESAVAMOORTHY R., ASHER S.A., Optically nonlinear Bragg diffracting nanosecond optical switches, Physical Review Letters 78(20), 1997, p. 3860.
  • [21] HOJO H., MASE A., Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals, Journal of Plasma and Fusion Research 80(2), 2004, pp. 89–90.
  • [22] GINZBURG V.L., The Propagation of Electromagnetic Wave in Plasma, Oxford, 1970.
  • [23] PRASAD S., SINGH V., SINGH A.K., Effect of inhomogeneous plasma density on the reflectivity in one dimensional plasma photonic crystal, Progress in Electromagnetics Research M 21, 2011, pp. 211–222.
  • [24] QI L.,YANG Z., FU T., Defect modes in one-dimensional magnetized plasma photonic crystals with a dielectric defect layer, Physics of Plasmas 19(1), 2012, article ID 012509.
  • [25] YEH P., Optical Waves in Layered Media, Wiley, 1988.
  • [26] GUO B., XIE M.Q., QIU X.M., PENG L., Photonic band structures of 1-D plasma photonic crystal with time-variation plasma density, Physics of Plasmas 19(4), 2012, article ID 044505.
  • [27] Yang L., Xie Y., Yu P., Wang G., Electromagnetic bandgap analysis of 1D magnetized PPC with oblique incidence, Progress In Electromagnetics Research M 12, 2010, pp. 39–50.
  • [28] HAI-FENG ZHANG, LI MA, SHAO-BIN LIU, Study of periodic band gap structure of the magnetized plasma photonic crystals, Optoelectronics Letters 5(2), 2009, pp. 112–116.
  • [29] SAKAI O., TACHIBANA K., Properties of electromagnetic wave propagation emerging in 2-D periodic plasma structures, IEEE Transactions on Plasma Science 35(5), 2007, pp. 1267–1273.
  • [30] WEILI FAN, LIFANG DONG, Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge, Physics of Plasmas 17(7), 2010, article ID 073506.
  • [31] TZU-CHYANG KING, WEN-KAI KUO, TZONG-JER YANG, TINGTING BIAN, CHIEN-JANG WU, Magnetic-field dependence of effective plasma frequency for a plasma photonic crystal, IEEE Photonics Journal 5(1), 2013, article ID 4700110.
  • [32] WU C.-J., YANG T.-J., LI C.C., WU P.Y., Investigation of effective plasma frequencies in one-dimensional plasma photonic crystals, Progress in Electromagnetics Research 126, 2012, pp. 521–538.
  • [33] BORN M, WOLF E., Principle of Optics, Pergamon Press, Oxford, 1970.
  • [34] NAUMOV A.N., ZHELTIKOV A.M., Ternary one-dimensional photonic band gap structures: dispersion relation extended phase-matching abilities and attosecond outlook, Laser Physics 11(7), 2001, pp. 879–884.
  • [35] BLOCH F., Über die Quantenmechanik der Elektronen in Kristallgittern, Zeitschrift für Physik 52, 1929, p. 555.
  • [36] BORN M., WOLF E., Principles of Optics, Macmillan, 1964.
  • [37] YEH P., YARIV A., CHI-SHAIN HONG, Electromagnetic propagation in periodic stratified media. I. General theory, Journal of the Optical Society of America 67(4), 1977, pp. 423–438.
  • [38] JEONG D.Y., YE Y.H., ZHANG Q.M., Effective optical properties associated with wave propagation in photonic crystals in finite length along the propagation direction, Journal of Applied Physics 92(8), 2002, pp. 4194–4200.
  • [39] DOWLING J.P., BOWDEN C.M., Anomalous index of refraction in photonic bandgap materials, Journal of Modern Optics 41(2), 1994, pp. 345–351.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a34579ac-e5cc-487b-963f-10a4746a60bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.