Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
First-arrival picking is a crucial and fundamental task in seismic data processing. Existing direct picking methods are often sensitive to background noise and complex near-surface conditions. In this paper, we propose a first-arrival picking through pattern matching and threshold adjustment (FPMA) method, which comprises two subroutines. The range detection subroutine obtains a first-arrival range with adaptive pattern selection and pattern matching techniques. The former selects an appropriate pattern, while the latter obtains the first-arrival range. The first-arrival detection subroutine determines first arrivals in the range with the threshold adjustment technique, which automatically selects an appropriate threshold for picking. Experiments on five datasets demonstrated that FPMA is more accurate and efficient than four popular methods.
Wydawca
Czasopismo
Rocznik
Tom
Strony
321--345
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
- School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China
- Lab of Machine Learning, Southwest Petroleum University, Chengdu 610500, China
autor
- School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China
- Lab of Machine Learning, Southwest Petroleum University, Chengdu 610500, China
autor
- School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China
- Lab of Machine Learning, Southwest Petroleum University, Chengdu 610500, China
- Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, China
Bibliografia
- 1. Alkhalifah T, Tsvankin I (1995) Velocity analysis for transversely isotropie media. Geophysics 60:1550-1566
- 2. Allen RV (1978) Automatic earthquake recognition and timing from single traces. Bull Seismol Soc Am
- 3. Alpuente M, Ballis D, Sapina J (2019) Static correction of maude programs with assertions. J Syst Softw 153:64-85
- 4. An S, Hu T, Liu Y, Peng G, Liang X (2017) Automatic first-arrival picking based on extended super-virtual interferometry with quality control procedure. Explor Geophys 48:124-130
- 5. An S, Hu T, Peng G (2016) Three-dimensional cumulant-based coherent integration method to enhance first-break seismic signals. IEEE Trans Geosci Remote Sens 55:2089-2096
- 6. Anthony RE, Ringler AT, Wilson DC, Bahavar M, Koper KD (2020) How processing methodologies can distort and bias power spectral density estimates of seismic background noise. Seismol Res Lett 91:1694-1706
- 7. Anujna M, Ushadevi A (2017) Converting and deploying an unstructured data using pattern matching. Am J Intell Syst 7:54-59
- 8. Bahia B, Sacchi MD (2020) Widely linear denoising of multicomponent seismic data. Geophys Prospect 68:431-445
- 9. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129-1159
- 10. Bradley BA, Bae SE, Polak V, Lee RL, Thomson EM, Tarbali K (2017) Ground motion simulations of great earthquakes on the alpine fault: effect of hypocentre location and comparison with empirical modelling. NZ J Geol Geophys 60:188-198
- 11. Chambers K, Dando BD, Jones GA, Velasco R, Wilson SA (2014) Moment tensor migration imaging. Geophys Prospect 62:879-896
- 12. Chen G, Li J (2022) CubeNet: array-based seismic phase picking with deep learning. Seismol Res Lett 93:2554-2569
- 13. Chen G, Yang W, Tan Y, Zhang H, Li J (2023) Automatic phase detection and arrival picking for microseismic events in hydraulic fracturing based on machine learning and array correlation. Chin J Geophys 66:1558-1574
- 14. Chen H, Wang P, Ren T, Pan Z, Liu J, Ma Y (2023) Nt-com: a combined machine learning model for picking up first arrival. Comput Geosci 173:105321
- 15. Chen Y (2020) Expression of concern: automatic microseismic event picking via unsupervised machine learning. Geophys J Int 221:2051
- 16. Donciu C, Temneanu M (2015) An alternative method to zero-padded DFT. Measurement 70:14-20
- 17. Gao L, Jiang H, Min F (2021) Automatic first-arrival picking through convolution kernel construction and particle swarm optimization. Comput Geosci 155:104859
- 18. Gao L, Jiang H, Min F (2021) Stable first-arrival picking through adaptive threshold determination and spatial constraint clustering. Expert Syst Appl 182:115216
- 19. Gao L, Jiang Z-Y, Min F (2019) First-arrival travel times picking through sliding windows and fuzzy c-means. Mathematics 7:221
- 20. Gao L, Liu D, Luo GF, Song GJ, Min F (2021) First-arrival picking through fuzzy c-means and robust locally weighted regression. Acta Geophys 69:1623-1636
- 21. Ghanem K, Sharafeldin S, Saleh A, Mabrouk W (2017) A comparative study of near-surface velocity model building derived by 3d traveltime tomography and dispersion curves inversion techniques. J Petrol Sci Eng 154:126-138
- 22. Gholami A (2014) Non-convex compressed sensing with frequency mask for seismic data reconstruction and denoising. Geophys Prospect 62:1389-1405
- 23. Guo C, Zhu T, Gao Y, Wu S, Sun J (2020) Aenet: automatic picking of p-wave first arrivals using deep learning. IEEE Trans Geosci Remote Sens 59:5293-5303
- 24. Guo C, Zhu T, Gao Y, Wu S, Sun J (2021) Aenet: automatic p-wave first arrivals using deep learning. IEEE Trans Geosci Remote Sens 59:5293-5303
- 25. Kim D, Byun J, Lee M, Choi J-H, Kim M (2017) Fast first arrival picking algorithm for noisy microseismic data. Explor Geophys 48:131-136
- 26. Law BK, Trad D (2018) Robust refraction statics solution and nearsurface velocity model building using feedback from reflection data. Geophysics 83:U63-U77
- 27. Landau GM, Vishkin U (1994) Pattern matching in a digitized image. Algorithmica 12:375-408
- 28. Lee M, Byun J, Kim D, Choi J, Kim M (2017) Improved modified energy ratio method using a multi-window approach for accurate arrival picking. J Appl Geophys 139:117-130
- 29. Li H-L (2020) Time works well: dynamic time warping based on time weighting for time series data mining. Inf Sci 547:592-608
- 30. Luo J, Xie Z, Xie M (2016) Interpolated DFT algorithms with zero padding for classic windows. Mech Syst Signal Process 70:1011-1025
- 31. Meng Y, Li Y, Zhang C, Zhao H (2017) A time picking method based on spectral multimanifold clustering in microseismic data. IEEE Geosci Remote Sens Lett 14:1273-1277
- 32. Min F, Wang L, Pan S, Song G (2022) Fast convex set projection with deep prior for seismic interpolation. Expert Syst Appl 213:119256
- 33. Min F, Wang L, Pan S, Song G (2023) D2unet: Dual decoder u-net for seismic image super-resolution reconstruction. IEEE Trans Geosci Remote Sens 61:1-13
- 34. Molyneux JB, Schmitt DR (1999) First-break timing: arrival onset times by direct correlation. Geophysics 64:1492-1501
- 35. Patel M (2018) Data Structure and Algorithm With C. Educreation Publishing
- 36. Peraldi R, Clement AC (1972) Digital processing of refraction data study of first arrivals. Geophys Prospect 20:529-548
- 37. Pinnegar CR, Mansinha L (2003) The s-transform with windows of arbitrary and varying shape. Geophysics 68:381-385
- 38. Raymer DG, Rutledge JT, Jaques P (2008) Semiautomated relative picking of microseismic events. SEG Technical Program Expanded Abstracts, pp 1411-1414
- 39. Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42:59-66
- 40. Ross ZE, Meier M-A, Hauksson E (2018) P wave arrival picking and first-motion polarity determination with deep learning. J Geophys Res: Solid Earth 123:5120-5129
- 41. Saad OM, Shalaby A, Samy L, Sayed MS (2018) Automatic arrival time detection for earthquakes based on modified laplacian of gaussian filter. Comput Geosci 113:43-53
- 42. Sabbione J, Velis D (2010) Automatic first-breaks picking: new strategies and algorithms. Geophysics 75:V67-V76
- 43. Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26:43-49
- 44. Saksamudre SK, Shrishrimal P, Deshmukh R (2015) A review on different approaches for speech recognition system. Int J Comput Appl 115:23-28
- 45. Senkaya M, Karsli H (2015) A semi-automatic approach to identify first arrival time: the cross-correlation technique (cct). Earth Sci Res J 18:107-113
- 46. Sick B, Joswig M (2017) Combining network and array waveform coherence for automatic location: examples from induced seismicity monitoring. Geophys J Int 208:1373-1388
- 47. Tsai KC, Hu W, Wu X, Chen J, Han Z (2019) Automatic first arrival picking via deep learning with human interactive learning. IEEE Trans Geosci Remote Sens 58:1380-1391
- 48. Zhang D, Fei TW, Han S, Tsingas C, Luo Y, Liu H (2022) Automatic first-arrival picking workflow by global path tracing. Geophysics 87:U9-U20
- 49. Zhang Q-J, Zhai M (2019) First break of the seismic signals in oil exploration based on information theory. Neural Comput Appl 31:1-9
- 50. Zhang Y (2020) Automatic microseismic event picking via unsupervised machine learning. Geophys J Int 222:1750-1764
- 51. Zhong T, Li F, Zhang R, Dong X, Lu S (2022) Multiscale residual pyramid network for seismic background noise attenuation. IEEE Trans Geosci Remote Sens 60:1-14
- 52. Zhu D, Li Y, Zhang C (2016) Automatic time picking for microseismic data based on a fuzzy c-means clustering algorithm. IEEE Geosci Remote Sens Lett 13:1900-1904
- 53. Zhu W, Beroza GC (2018) PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys J Int 216:261-273
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a34151ad-da20-4041-a846-e853fec91313
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.