PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An innovative rainwater system as an effective alternative for cubature retention facilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on the possibilities of rainwater flow control in an innovative rainwater system which is equipped with a retention canals system. Sewage retention canal is a modern solution that provides effective retention of excess rainwater by using a capacity of sewer pipes and manholes. The retention is possible by using special damming partitions which have flow openings. The hydraulic working of the traditional rainwater system and the innovative rainwater system were compared with each other. The analysis was based on the results obtained from simulations using hydrodynamic modeling. Maximum possible values of rainwater outflow intensity from outlet nodes for the traditional rainwater system and the innovative rainwater system were discussed. On the basis of the analysis it was shown that the innovative rainwater system outweighs the classic rainwater one. It discharges two functions: transports and simultaneously retains excess rainwater in canals.
Wydawca
Rocznik
Strony
532--547
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszów, Poland
  • Department of Infrastructure and Water Management, Rzeszów University of Technology, Rzeszów, Poland
  • Department of Infrastructure and Water Management, Rzeszów University of Technology, Rzeszów, Poland
  • Department of Infrastructure and Water Management, Rzeszów University of Technology, Rzeszów, Poland
Bibliografia
  • [1] Starzec, M. (2020). Design of innovative drainage systems. Ph.D. Dissertation. Rzeszów University of Technology, Rzeszów.
  • [2] Dziopak, J. (1992). Theoretical analysis and modeling of multi-chamber storage reservoirs. Monograph 125, Cracow University of Technology, Cracow (in Polish).
  • [3] Słyś, D. (2008). Retention and infiltration of rainwater. Publishing House of the Rzeszów University of Technology, Rzeszów (in Polish).
  • [4] Starzec, M. (2018). The impact of construction of piling partitions on the retention efficiency of a sewerage network. E3S Web of Conferences 45, 00087. doi: 10.1051/e3sconf/20184500087
  • [5] Dziopak, J. (2004). Modeling of multi-chamber storage reservoirs in the sewage system. Publishing House of the Rzeszów University of Technology, Rzeszów (in Polish).
  • [6] Stec, A., Słyś, D., Dziopak, J. (2015). Optimization in design of storage reservoirs. Publishing House of the Rzeszów University of Technology, Rzeszów (in Polish).
  • [7] Słyś, D., Dziopak, J. (2014). Retention Sewage Canal. Patent No. 217405. Patent Office of the Republic of Poland: Warsaw, Poland.
  • [8] Starzec, M., Dziopak, J. Słyś, D., (2017). Hydrodynamic modeling of innovative retention channels in the sewage system. Conference materials City infrastructure. Publishing House of the Rzeszów University of Technology, Rzeszów, 211–246 (in Polish).
  • [9] Starzec, M., Dziopak, J. (2020). A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System. Resources 9, no. 9: 108. doi: 10.3390/resources9090108.
  • [10] Pei, F., Wu, C., Liu, X., Hu, Z., Xia, Y., Liu, L.A., Wang, K., Zhou, Y., Xu, L. (2018). Detection and attribution of extreme precipitation changes from 1961 to 2012 in the Yangtze River Delta in China. Catena, 169, 183 – 194. doi: /10.1016/j.catena.2018.05.038.
  • [11] Qiu, J., Cao, B., Park, E., Yang, X., Zhang, W., Tarolli, P. (2021). Flood Monitoring in Rural Areas of the Pearl River Basin (China) Using Sentinel-1 SAR. Remote Sensing 13, no. 7: 1384. doi:10.3390/rs13071384.
  • [12] Huang, H., Chen, X., Zhu, Z., Xie, Y., Liu, L., Wang, X., Wang, X., Liu, K. (2018). The changing pattern of urban flooding in Guangzhou, China. Sci Total Environ 1;622–623:394–401.22. doi: 10.1016/j.scitotenv.2017.11.358.
  • [13] Trenberth, K.E., Fasullo, J.T., Shepherd, T.G. (2015). Attribution of climate extreme events. Nature Clim Change 5, 725–730. doi: 10.1038/nclimate2657.
  • [14] Heinzlef, C.; Robert, B.; Hemond, Y.; Serre, D. (2020). Operating urban resilience strategies to face climate change and associated risks: Some advances from theory to application in Canada and France. Cities 104, 102762.
  • [15] Kordana-Obuch, S., Starzec, M. (2020). Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates. Resources 9(9):110. doi: 10.3390/resources9090110.
  • [16] Nachshon, U., Netzer, L., Livshitz, Y. (2016). Land cover properties and rain water harvesting in urban environments. Sustainable Cities and Society, Volume 27, 398–406. doi: 10.1016/j.scs.2016.08.008.
  • [17] Qin, Y. (2020). Urban Flooding Mitigation Techniques: A Systematic Review and Future Studies. Water 12, no. 12: 3579. doi: 10.3390/w12123579.
  • [18] Dziopak, J. (1997). Multi-chamber storage reservoirs in the sewerage system. The Publishing Office of Technical University of Częstochowa, Częstochowa.
  • [19] Starzec, M., Dziopak, J., Aleksejev, M. I. (2014). Influence of chosen methods on the formation of rain water flow hydrographs. Modern cities, infrastructure and environment: INFRAEKO 2014: 4th International Scientific and Technical Conference INFRAEKO 2014. Publishing House of the Rzeszów University of Technology, Rzeszów (in Polish).
  • [20] Myhre, G., Alterskjær, K., Stjern, C.W. et al. (2019). Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports volume 9, Article number: 16063. doi: 10.1038/s41598-019-52277-4.
  • [21] Bogdanowicz, E., Stachy, J. (1998). Maximum rainfall in Poland. Design Characteristics. The Publishing House of the Institute of Meteorology and Water Management, Series: Hydrology and Oceanology No 23, Warsaw (in Polish).
  • [22] Kotowski, A., Kaźmierczak, B., Dancewicz, A. (2010). Precipitation Modeling for Sewage System Sizing. The Publishing House of the Civil Engineering Committee PAN (the Polish Academy of Sciences), Warsaw.
  • [23] Starzec, M., Dziopak, J., Słyś, D. (2020). An Analysis of Stormwater Management Variants in Urban Catchments. Resources 9, no. 2: 19. doi: 10.3390/resources9020019.
  • [24] Szafron, J., Tarnawska, M. (2016). Retention systems of Weholite technology. Modern cities, infrastructure and environment: INFRAEKO 2014: 4th International Scientific and Technical Conference INFRAEKO 2016. Publishing House of the Rzeszów University of Technology, Rzeszów (in Polish).
  • [25] Kordana, S. Słyś, D. (2020). An analysis of important issues impacting the development of stormwater management systems in Poland. Science of The Total Environment, Volume 727, 138711. doi: 10.1016/j.scitotenv.2020.138711.
  • [26] Słyś, D., Dziopak, J. (2007). Modelling of classic and pump-gravitational reservoirs in sewage Systems. Publishing House of the Rzeszów University of Technology, Rzeszów (in Polish).
  • [27] Słyś, D. (2009). Reservoir retention and control of sewage inflow to the treatment plant. The Publishing House of the Civil Engineering Committee PAN (the Polish Academy of Sciences), Lublin, Poland (in Polish).
  • [28] Słyś, D., Dziopak, J. (2021). Innovative gravity sewage system in city drainage infrastructure. Modern Civil Engineering, no. 2, 38–43 (in Polish).
  • [29] Słyś, D., Stec, A., Pochwat, K., Dziopak, J. (2018). Innovative solutions for Modern Drainage Infrastructure. Modern Civil Engineering, no. 3, 32–38 (in Polish).
  • [30] Abbas, O., Abou Rjeily Y., Sadek M., Shahrour I. (2017). A large-scale experimentation of the smart sewage system. Water and Environment Journal 31, 515–521. doi: 10.1111/wej.12273.
  • [31] Fischer, E. M., Knutti, R. (2016). Observed heavy precipitation increase confirms theory and early models. Nature Climate Change, volume 6 (11), 986–991. doi: 10.1038/nclimate3110.
  • [32] Berg, P., Moseley, C., Haerter, J. O. (2013). Strong increase in convective precipitation in response to higher temperatures. Nature Geoscience 6(3):181–185. doi: 10.1038/ngeo1731.
  • [33] Starzec, M., Dziopak, J. (2015). Influence of direction and velocity of precipitation wave displacement in cooperation sewage reservoirs. Proceedings of ECOpole, 755–765. doi: 10.2429/proc.2015.9(2)086.
  • [34] Degórska, B. (2017). Spatial urbanization of rural areas of the Warsaw metropolitan area: ecological and landscape context. Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw (in Polish).
  • [35] Gogate, N.G., Kalbar, P.P., Raval, P.M. (2016). Assessment of stormwater management options in urban contexts using Multiple Attribute Decision-Making. Journal of Cleaner Production 142. doi: 10.1016/j.jclepro.2016.11.079.
  • [36] Shaw, T., Baldwin, M., Barnes, E. et al. (2016). Storm track processes and the opposing influences of climate change. Nature Geosci 9, 656–664. doi: 10.1038/ngeo2783.
  • [37] Starzec, M., Dziopak, J., Słyś, D. (2017). Designing a retention sewage canal with consideration of the dynamic movement of precipitation over the selected urban catchment. In Underground Infrastructure of Urban Areas 4, 4th ed.; Madryas, C., Kolonko, A., Nienartowicz, B., Szot, A., Eds.; CRC Press: London, UK, Volume 1, pp. 193–200. ISBN 9781138559530.
  • [38] Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A.G., Mittal, N., Feliu, E., Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management 146C:107–115. doi: 10.1016/j.jenvman.2014.07.025.
  • [39] Rossman, L. (2015). Storm Water Management Model User's Manual Version 5.1 - manual. US EPA Office of Research and Development, Washington, DC, EPA/600/R-14/413 (NTIS EPA/600/R-14/413b), 2015.
  • [40] Willuweit, L., O’Sullivan, J.J. (2013). A decision support tool for sustainable planning of urban water systems: Presenting the Dynamic Urban Water Simulation Model. Water Research, 47(20):7206-20. doi:10.1016/j.watres.2013.09.060.
  • [41] Słyś, D., Dziopak, J. (2012). Gravitational regulating liquid reservoir. Patent No. 210924, Patent Office of the Republic of Poland: Warsaw, Poland.
  • [42] Słyś, D., Dziopak, J. (2011). Distribution reservoir for reducing the hydraulic load. Patent No 208508. Patent Office of the Republic of Poland: Warsaw, Poland.
  • [43] Dziopak, J., Słyś, D. (2011). Regulating tanks for liquids with adjustable flow. Patent No. 205761. Patent Office of the Republic of Poland: Warsaw, Poland.
  • [44] Słyś, D., Dziopak, J., Słyś D. (2009). Detention tank with controlled outflow. Patent No. 202983. Patent Office of the Republic of Poland: Warsaw, Poland.
  • [45] Dziopak, J., Słyś, D. (2012). Regulating reservoir with self-regulated flow. Patent No. 210923. Patent Office of the Republic of Poland: Warsaw, Poland.
  • [46] Dziopak, J., Hypiak, J., Słyś, D. (2014). Impounding filtrating reservoir for rainwaters. Patent No. 217585. Patent Office of the Republic of Poland: Warsaw, Poland.
  • [47] Pochwat, K., Dziopak, J., Słyś, D. (2019). Storage reservoir for rainwater and combined sewage. Patent No. 233981. Patent Office of the Republic of Poland: Warsaw, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a33e96c2-eddb-4bde-a5ac-33b6cffa991e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.