PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An oxidation-resisitant measurement apparatus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
On the basis of induction heating, radiation heating and liquid nitrogen refrigeration, high-temperature, medium-temperature, normal-temperature and low-temperature heating/refrigeration furnaces were designed, respectively. An apparatus with a wide temperature range and high accuracy applied to test oxidation resistance of materials has been developed based on the thermogravimetric method and the heat transfer principle. The apparatus consists of four heating/cooling systems, a specimen fixture positioning unit, a laser positioning unit, vertical and horizontal moving guide rails, and a high-precision weighing balance. The apparatus, based on the thermogravimetric method, is able to test oxidation resistance of materials. In the test, the temperature range was -180~3000°C (the highest temperature is determined by material properties). The temperature control accuracy was ±5°C. The accuracy of on-line weighing was ±0.1 mg. The measurement uncertainty was 0.2 mg. Compared with other relevant devices, this apparatus has its own advantages: simple operation, wide heating/cooling temperature range, sufficient specimen heating, high sensitivity and precision, and short heating/cooling time. The experimental results show that the developed apparatus presented in this study not only can be used for isothermal thermogravimetric tests, but also for thermal cycling tests and multi-step oxidation tests. With the effective integration of multiple heating apparatus and refrigeration apparatus, the apparatus breaks through the limitations of the heating/cooling temperature range of the existing devices, accomplishes the high-precision oxidation resistance test of materials in a wide temperature range, and will play a great role in improving the research of materials.
Rocznik
Strony
725--737
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wzory
Twórcy
autor
  • Harbin Institute of Technology, School of Electrical Engineering and Automation, Harbin 150001, People’s Republic of China
autor
  • Harbin Institute of Technology, School of Electrical Engineering and Automation, Harbin 150001, People’s Republic of China
autor
  • Harbin Institute of Technology, School of Electrical Engineering and Automation, Harbin 150001, People’s Republic of China
Bibliografia
  • [1] Perepezko, J. H., Sakidja, R. (2010). Oxidation-resistant coatings for ultra-high-temperature refractory mo-based alloys. Adv. Eng. Mater., 11(11), 892-897.
  • [2] Koo, C. H., Yu, T. H. (2000). Pack cementation coatings on ti 3 al-nb alloys to modify the high-temperature oxidation properties. Surf. Coat. Technol., 126(2), 171-180.
  • [3] Beresnev, A. G., Logachev, A. V., Razumovskii, I. M. (2012). Theoretical analysis of the alloying system and principles of the creating of a new generation of high-temperature nickel alloys by method of the granular metallurgy. Genome. Res., 12(1), 3-15.
  • [4] Kastanaki, E., Vamvuka, D., Grammelis, P. (2002). Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization. Fuel. Process. Technol., 77(02), 159-166.
  • [5] Horowitz, H. H., Metzger, G. (1999). A New Analysis of Thermogravimetric Traces. Astron. Astrophys., 353(1), 177-185.
  • [6] Xiong, Y., Jiang, T., Zou, X. (2003). Automatic proximate analyzer of coal based on isothermal thermogravimetric analysis (tga) with twin-furnace. Thermochim. Acta., 408(1), 97-101.
  • [7] Sarwar, A., Khan, M. N., Azhar, K. F. (2012). Kinetic studies of pyrolysis and combustion of thar coal by thermogravimetry and chemometric data analysis. J. Therm. Anal. Calorim., 109(1), 97-103.
  • [8] Meng, A., Chen, S., Long, Y., Zhou, H., Zhang, Y., Li, Q. (2015). Pyrolysis and gasification of typical components in wastes with macro-tga. Waste. Manage., 157(3), 1-8.
  • [9] Gracik, T. D., Long, G. L., Sorathia, U.A.K., Douglas, H. E. (1992). A novel thermogravimetric technique for determining flammability characteristics of polymeric materials. Thermochim. Acta., 212(2), 209-217.
  • [10] Kettrup, A., Matuschek, G., Utschick, H., Namendorf, C., Brauer, G. (1997). A macro sta-system for environmental samples. Thermochim. Acta., 295(1-2), 119-131.
  • [11] Mikkelsen, L., Solvang, M., Larsen, P. H., Blumm, J. (2005). Novel instrument for high temperature thermogravimetric measurements in high water vapour contents. J. Therm. Anal. Calorim., 80(3), 775-780.
  • [12] Mennoud, F., Golfier, F., Salvador, S., Van, D.S.L., Dirion, J. L. (2018). Experimental and numerical study of steam gasification of a single charcoal particle. Combust. Flame., 145(1), 59-79.
  • [13] L’Vov, B. V. (2009). Role of vapour oversaturation in the thermal decomposition of solids. J. Therm. Anal. Calorim., 96(1), 321-330.
  • [14] Becidan, M., Skreiberg, O., Hustad, J. E. (2007). Products distribution and gas release in pyrolysis of thermally thick biomass residues samples. J. Anal. Appl. Pyrolysis., 78(1), 207-213.
  • [15] Devaraju, J. T., Suresha, P. H., Ramani, Radhakrishna, M. C. (2011). Development of microcontroller based thermogravimetric analyzer. Measurement., 44(10), 2096-2103.
  • [16] Chen, W. H., Pochih, K. (2011). Torrefaction and coorrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 36(2), 803-811.
  • [17] Ma, S., Huang, G., Hill, J. O. (1991). Knis - a computer program for the systematic kinetic analysis of non-isothermal thermogravimetric data. Thermochim. Acta, 184(2), 233-241.
  • [18] Cardinale, G. F., Howitt, D. G., Mccarty, K. F., Medlin, D. L., Mirkarimi, P. B., Moody, N. R. (1996). Analysis of residual stress in cubic boron nitride thin films using micromachined cantilever beams. Diam. Relat., 5(11), 1295-1302.
  • [19] Long, Y., Meng, A., Shen, C., Hui, Z., Zhang, Y., Li, Q. (2017). Pyrolysis and combustion of typical wastes in a newly designed macro-tga: characteristics and simulation by model components. Energ. Fuel., 31(7), 7582-7590.
  • [20] Westrich, T. A., Dahlberg, K. A., Kaviany, M., Schwank, J. W. (2011). High-temperature photocatalytic ethylene oxidation over TiO2. J. Phys. Chem. C., 115(33), 16537-16543.
  • [21] Wang, Y. T., Lu, A. H., Li, W. C. (2012). Mesoporous manganese dioxide prepared under acidic conditions as high performance electrode material for hybrid supercapacitors. Microporous Mesoporous Mat., 153(6), 247-253.
  • [22] An, D. Y., Dai, J. M., Xiao, P. (2019). Modelling the heat transfer of an antioxidant coating heating system in wide temperature and simulation. Results. Phys., 12, 124-131.
  • [23] Ge,Y., Wang,Y., Chen, J. (2018). An Nb2O5-SiO2-Al2O3/NbSi2/Nb5Si3, multilayer coating on Nb-Hf alloy to improve oxidation resistance. J. Alloy. Compd., 745, 271-281.
  • [24] Choi, Y. J., Yoon, J. K., Kim, G. H., Yoon. (2017). High temperature isothermal oxidation behavior of nbsi2 coating at 1000 - 1450°C. Corros. Sci., 129, S0010938X1730330X.
  • [25] Gonzalez, A. G., Herrador, M. A. (2007). The assessment of electronic balances for accuracy of mass measurements in the analytical laboratory. Accredit. Qual. Assur., 12(1), 21-29.
  • [26] Reichmuth, A., Wunderli, S., Weber, M. (2004). The uncertainty of weighing data obtained with electronic analytical balances. Microchim. Acta., 148(3-4), 133-141.
Uwagi
EN
This paper is supported by National Defense Technical Basic Research Program of China (Grant No. JSZL2015603B002) and Aviation Science Fund Project (Grant No. 20172777007 ).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a33dd4e0-8119-4cf5-9473-cd3895eb173d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.