Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an experimental study on chicken egg white solution ultrafiltration, where membrane fouling has been the main point of concern. Separation process has been performed with a 150 kDa tubular ceramic TiO2/Al2O3 membrane. The operating parameters have been set as follows: transmembrane pressure 105–310 kPa, cross-flow velocity 2.73–4.55 m/s, pH 5 and constant temperature of 293 K. Resistance-in-series model has been used to calculate total resistance and its components. The experimental data have been described with four pore blocking models (complete blocking, intermediate blocking, standard blocking and cake filtration). The results obtained show that the dominant fouling mechanism is represented by cake filtration model.
Czasopismo
Rocznik
Tom
Strony
295--–308
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Agana B.A., Reeve D., Orbell J.D., 2013. Performance optimization of a 5 nm TiO2 ceramic membrane with respect to beverage production wastewater. Desalination, 311, 162–172. DOI: 10.1016/j.desal.2012.11.027.
- 2. Almandoz C., Pagliero C., Ochoa A., Marchese J., 2010. Corn syrup clarification by microfiltration with ceramic membranes. J. Membr. Sci., 363, 87–95. DOI: 10.1016/j.memsci.2010.07.017.
- 3. Bader M.S.H., Veenstra J.N., 1996. Analysis of concentration polarization phenomenon in ultrafiltration under turbulent flow conditions. J. Membr. Sci., 114, 139–148. DOI: 10.1016/0376-7388(95)00136-0.
- 4. Balyan U., Sarkar B., 2018. Analysis of flux decline using sequential fouling mechanisms during concentration of Syzygium cumini (L.) leaf extract. Chem. Eng. Res. Des., 130, 167–183. DOI: 10.1016/j.cherd.2017.12.015.
- 5. Bodzek M., Bohdziewicz J., Konieczny K., 1997. Techniki membranowe w ochronie ´srodowiska. Wydawnictwo Politechniki Śląskiej.
- 6. Corbatón-Báguena M. J., Álvarez-Blanco S., Vincent-Vela M.C., 2015. Fouling mechanisms of ultrafiltration membran es fouled with whey model solutions. Desalination, 360, 87–96. DOI: 10.1016/j.desal.2015.01.019.
- 7. Corbatón-Báguena M.J., Álvarez-Blanco S., Vincent-Vela M.C., 2018. Evaluation of fouling resistances during the ultrafiltration of whey model solutions. J. Cleaner Prod., 172, 358–367. DOI: 10.1016/j.jclepro.2017.10.149. de Barros S.T.D., Andrade C.M.G., Mendes E.S., Peres L., 2003. Study of fouling mechanism in pineapple juice clarification by ultrafiltration. J. Membr. Sci., 215, 213–224. DOI: 10.1016/S0376-7388(02)00615-4.
- 8. Ehsani N., Parkkinen S., Nyström M., 1997. Fractionation of natural and model egg-white protein solutions with modified and unmodified polysulfone UF membranes. J. Membr. Sci., 123, 105-119. DOI: 10.1016/S0376-7388(96)00207-4.
- 9. Fane A.G., Wang R., Jia Y., 2011. Membrane technology: Past, present and future. In: Wang L.K., Chen J.P.,
- 10. Hung YT., Shammas N.K. (Eds.) Membrane and Desalination Technologies. Handbook of Environmental Engineering, Vol 13. Humana Press, Totowa, NJ, 1–45. DOI: 10.1007/978-1-59745-278-6_1.
- 11. Field R.W.,Wu D., Howell J.A., Gupta B.B., 1995. Critical flux concept for microfiltration fouling. J. Membr. Sci., 100, 259–272. DOI: 10.1016/0376-7388(94)00265-Z.
- 12. Gabru´s E., 2016. Wybrane metody adsorpcyjno-membranowe w inżynierii procesowej. BEL Studio.
- 13. Ghosh R., Cui Z.F., 1998. Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment. J. Membr. Sci., 139, 17–28. DOI: 10.1016/S0376-7388(97)00236-6.
- 14. Hermia J., 1985. Blocking filtration. Application to non-Newtonian fluids. In: Rushton A. (Ed.), Mathematical models and design methods in solid-liquid separation. Springer Netherlands, 83–89. DOI: 10.1007/978-94-009-5091-7_5.
- 15. Huisman I.H., Prádanos P., Hernández A., 2000. The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration. J. Membr. Sci., 179, 79–90. DOI: 10.1016/S0376-7388(00)00501-9.
- 16. Jana S., Purkait M.K., Mohanty K., 2011. Clay supported polyvinyl acetate coated composite membrane by modified dip coating method: Application for the purification of lysozyme from chicken egg white. J. Membr. Sci., 382, 243–251. DOI: 10.1016/j.memsci.2011.08.011.
- 17. Kumar R.V., Goswami L., Pakshirajan K., Pugazhenthi G., 2016. Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. J. Water Process Eng., 13, 168–175. DOI: 10.1016/j.jwpe.2016.08.012.
- 18. Li M., Zhao Y., Zhou S., Xing W., 2010. Clarification of raw rice wine by ceramic microfiltration membranes and membrane fouling analysis. Desalination, 256, 166–173. DOI: 10.1016/j.desal.2010.01.018.
- 19. Lu J., Wan Y., Cui Z., 2005. Fractionation of lysozyme and chicken egg albumin using ultrafiltration with 30-kDa commercial membranes. Ind. Eng. Chem. Res., 44, 7610–7616. DOI: 10.1021/ie049042c.
- 20. Lu J.,Wan Y., Cui Z., 2006. Strategy to separate lysozyme and ovalbumin from CEW using UF. Desalination, 200, 477–479. DOI: 10.1016/j.desal.2006.03.402.
- 21. Matsumoto Y., Ito N., Inui T., 1996. Characteristics of ovalbumin gel layer formed on ceramic microfiltration membranes. J. Chem. Eng. Jpn., 29, 933–938. DOI: 10.1252/jcej.29.933.
- 22. Muca R., Piątkowski W., Antos D., 2017. A shortcut method for evaluation of protein deposition onto the membrane surface in crossflow ultrafiltration. Eng. Life Sci., 17, 370–381. DOI: 10.1002/elsc.201500159.
- 23. Pabby A.K., Rizvi S.S.H., Requena A.M.S., 2008. Handbook of membrane separations: Chemical, pharmaceutical, food, and biotechnological applications. Taylor & Francis.
- 24. Prádanos P., Hernández A., Calvo J.I., Tejerina F., 1996. Mechanisms of protein fouling in cross-flow UF through an asymmetric inorganic membrane. J. Membr. Sci., 114, 115–126. DOI: 10.1016/0376-7388(95)00324-X.
- 25. Rayess Y.E., Albasi C., Bacchin P., Taillandier P., Mietton-Peuchot M., Devatine A., 2011. Cross-flow microfiltration of wine: Effect of colloids on critical fouling conditions. J. Membr. Sci., 385–386, 177–186. DOI: 10.1016/j.memsci.2011.09.037.
- 26. Samaei S. M., Gato-Trinidad S., Altaee A., 2018. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Sep. Purif. Technol., 200, 198–220. DOI: 10.1016/j.seppur.2018.02.041.
- 27. Tung K.-L., Hu C.-C., Li C.-L., Chuang C.-J., 2007. Investigating protein crossflow ultrafiltration mechanisms using interfacial phenomena. J. Chin. Inst. Chem. Eng,, 38, 303–311. DOI: 10.1016/j.jcice.2007.01.005.
- 28. Vincent Vela M.C., Álvarez Blanco S., Lora García J., Bergantiños Rodríguez E., 2009. Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG. Chem. Eng. J., 149, 232–241. DOI: 10.1016/j.cej.2008.10.027.
- 29. Wan Y., Lu J., Cui Z., 2006. Separation of lysozyme from chicken egg white using ultrafiltration. Sep. Purif. Technol., 48, 133–142. DOI: 10.1016/j.seppur.2005.07.003.
- 30. Yin N., Zhong Z., Xing W., 2013. Ceramic membrane fouling and cleaning in ultrafiltration of desulfurization wastewater. Desalination, 319, 92–98. DOI: 10.1016/j.desal.2013.03.028.
- 31. Youravong W., Li Z., Laorko A., 2010. Influence of gas sparging on clarification of pineapple wine by microfiltration. J. Food Eng., 96, 427–432. DOI: 10.1016/j.jfoodeng.2009.08.021.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a338aac5-3a58-4693-9e62-e10b771f70e3