PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technical note: Prediction of static liquefaction by Nor Sand constitutive model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper gives a short description of unstable behaviour of saturated sand under undrained monotonic loading. Constitutive model Nor Sand capable to describe static liquefaction is presented. The model is based on critical state soil mechanics and assumes associated flow rule. Hardening law incorporates the state parameter proposed earlier by Been and Jefferies. Results of numerical simulations of undrained element tests have been presented and discussed.
Wydawca
Rocznik
Strony
75--83
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
  • Department of Geotechnics and Roads, Faculty of Civil Engineering, Silesian University of Technology, al. Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] ALARCON-GUZMAN A., LEONARDS G., CHAMEAU J.L., Undrained monotonic and cyclic strength of sands, ASCE J. Geotech. Engng, 1988, 114, 10, 1089–1109.
  • [2] BEEN K., JEFFERIES M.G., HACHEY J., The critical states of sands, Géotechnique, 1991, 41, 3, 365–381.
  • [3] BOUKPETI N., MRÓZ Z., DRESCHER A., A model for static liquefaction in triaxial compression and extension, Can. Geotech. J., 2002, 39, 1243–1253.
  • [4] CASAGRANDE A., Characteristics of cohesionless soils affecting the stability of earth fills, Journal of Boston Society of Civil Engineers, 1936, 23, 257–276.
  • [5] CASAGRANDE A., Liquefaction and cyclic deformation of sands, a critical review, Proc. 5th Pan-American Conf. on Soil Mech. and Found. Engng, Buenos Aires, 1975, 5, 79–133.
  • [6] CASTRO G., Liquefaction and cyclic mobility of saturated sands, J. Geotech. Engng Div., ASCE, 1975, 101, 6, 551–569.
  • [7] CASTRO G., POULOS S.J., Factors affecting liquefaction and cyclic mobility. J. Geotech. Engng Div. ASCE, 1977, 103, 501–516.
  • [8] DARVE F., Incrementally non-linear constitutive relationships, in Darve F. (ed.), Geomaterials Constitutive Equations and Modelling, Elsevier Applied Science, London 1990, 213–238.
  • [9] DARVE F., LABANIEH S., Incremental constitutive law for sands and clays: simulation of monotonic and cyclic tests, Int. J. Numer. Anal. Meth. Geomech., 1982, 6, 243–275.
  • [10] DRUCKER D.C., GIBSON R.E., HENKEL D.J., Soil mechanics and work hardening theories of plasticity, Trans. ASCE, 1957, 122, 338–346.
  • [11] DE GROOT M.B., BOLTON M.D., FORAY P., MEIJERS P., PALMER A.C., SANDVEN R., SAWICKI A., TEH T.C., Physics of Liquefaction Phenomena around Marine Structures, Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006, Vol. 132, No. 4, July 1, 227–243.
  • [12] ISHIHARA K., TATSUOKA F., YASUDA V., Undrained deformation and liquefaction of sand under cyclic stresses, Soils and Foundations, 1975, 15, 29–44.
  • [13] ISHIHARA K., Liquefaction and flow failure during earthquakes, Géotechnique, 1993, 43, No. 3, 351–415.
  • [14] JEFFERIES M.G., Nor-Sand: a simple critical state model for sand, Géotechnique, 1993, 43, No 1, 91–103.
  • [15] JEFFERIES M.G., BEEN K., Soil Liquefaction. A critical state approach, Taylor & Francis, London and New York 2006.
  • [16] KOLYMBAS D., An outline of hypoplasticity, Archive of Applied Mechanics, 1991, 61, 143–151.
  • [17] LADE P.V., Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces, Int. J. Solids and Structures, 1977, 13, 1019–1035.
  • [18] LI X.S., DAFALIAS Y.F., WANG Z.-L., State dependent dilatancy in critical state constitutive modelling of sand, Canadian Geotechnical Journal, 1999, 36, 599–611.
  • [19] MARCUSON W.F. III., Definition of terms related to liquefaction, J. Geotech. Eng. Div., Am. Soc. Civ. Eng., 1978, 104(9), 1197–1200.
  • [20] NOVA R., WOOD D.M., A constitutive model for sand in triaxial compression, Int. J. Num. Anal. Meth. Geomech., 1979, 3, 255–278.
  • [21] PASTOR M., ZIENKIEWICZ O.C., CHAN A.H.C., Generalized plasticity and the modelling of soil behaviour, Int. J. Num. Anal. Meth. Geomech., 1990, 14, 151–190.
  • [22] PASTOR M., ZIENKIEWICZ O.C., LEUNG K.H., A simple model for transient soil loading in earthquake analysis. II: Nonassociative model for sands, Int. J. Numer. Anal. Methods in Geomech., 1985, 9, 477–498.
  • [23] POULOS S.J., The steady state of deformation, J. Geotech. Eng. Div., ASCE, 1981, 107, 5, 553–562.
  • [24] ROSCOE K., SCHOFIELD A.N., WROTH C.P., On the yielding of soils, Géotechnique, 1958, 8, 1, 22–53.
  • [25] SAWICKI A., ŚWIDZIŃSKI W., Modelling the pre-failure instabilities of sand, Computers and Geotechnics, 2010, 37, 781–788.
  • [26] SLADEN J.A., D’HOLLANDER R.D., KRAHN J., The liquefaction of sands, a collapse surface approach, Can. Geotech. J., 1985, 22, 4, 564–578.
  • [27] ŚWIDZIŃSKI W., Compaction and liquefaction mechanisms of non-cohesive soils, in Polish, Wydawnictwo IBW PAN, Gdańsk 2006.
  • [28] VAID Y.P., CHUNG E.K.F., KUERBIS R.H., Stress path and steady state, Canadian Geotech. J., 1990, Vol. 27, 1–7.
  • [29] VERDUGO R., ISHIHARA K., The steady state of sandy soils, Soils and Foundations, 1996, Vol. 36, No. 2, 81–91.
  • [30] WU W., NIEMUNIS A., Failure criterion, flow rule and dissipation function derived from hypoplasticity, Mech. Cohesive- Frictional Mater., 1996, 1, 145–163.
  • [31] YAMAMURO J.A., LADE P.V., Static liquefaction of very loose sands, Can. Geotech. J., 1997, 34(6), 905–917.
  • [32] YAMAMURO J.A., LADE P.V., Steady State Concepts and Static Liquefaction of Silty Sands, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(9), 868–877.
  • [33] YAMAMURO J.A., LADE P.V., Experiments and modelling of silty sands susceptible to static liquefaction, Mechanics of Cohesive-Frictional Materials, Wiley, 1999, Vol. 4, No. 6, 545–564.
  • [34] YOUD T.L., IDRISS I., ANDRUS R., ARANGO I., CASTRO G., CHRISTIAN J., DOBRY R., FINN W., HARDER L. JR., HYNES M., ISHIHARA K., KOESTER J., LIAO S., MARCUSON W., III, MARTIN G., MITCHELL J., MORIWAKI Y., POWER M., ROBERTSON P., SEED R., STOKOE K. II, Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of Soils, J. Geotech. Geoenviron. Eng., 2001, 127 (10), 817–833.
  • [35] ZIENKIEWICZ O.C., MRÓZ Z., Generalized plasticity formulation and application to geomechanics, In: Mechanics of Engineering Materials, Eds C.S. Desai, R.H. Gallaher, John Wiley and Sons, 1985.
  • [36] ZIENKIEWICZ O.C., LEUNG K.H., PASTOR M., A simple model for transient soil loading in earthquake analysis. I: Basic model and its application, Int. J. Numer. Anal. Methods in Geomech., 1985, 9, 953–976
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a336d352-7a14-42cb-bf6e-29d6904342ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.