Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Biodegradable polymers should be non-toxic, possess low immunogenicity and good mechanical properties. Due to their hydrophobicity and their low surface energy cells only poorly attach, spread and proliferate on these biodegradable polyesters. Therefore, the surface of these polyesters should usually be modified and already several approaches have been presented to increase their cell affinity. In this research the influence of hydrogen peroxide combined with ultra violet irradiation on wettability, morphology and mechanical properties of PU/PLA blends as well as their pure components. It was clearly visible that both pure PU and PLA acted completely different form PU/PLA blend during treatment. The wettability of pure polymers changed after H2O2/UV, PU surface became more hydrophilic, whereas PLA becomes slightly hydrophobic. Due to micropores and microcracks visible on surfaces resulted from breaking ester linkage, deterioration of their mechanical properties was also observed. The exposure of PU/PLA films to H2O2/UV irradiation showed the change of wettability toward more hydrophilic and increase of mechanical properties because of specific affinity to the etching process.
Czasopismo
Rocznik
Tom
Strony
44--48
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- State Higher Vocational School in Tarnow, Mickiewicza 8, 33-100 Tarnów, Poland
Bibliografia
- 1. Y. Ikada and H. Tsuji, Macromol. Rapid Commun., 2000, 21, 117–132.
- 2. J.C. Middleton and A.J. Tipton, Biomaterials, 2000, 21, 2335–2346.
- 3. P.A. Gunatillake, R. Adhikari and N. Gadegaard, Eur. Cells Mater., 2003, 5, 1–16.
- 4. I. Vroman and L. Tighzert, Materials (Basel)., 2009, 2, 307–344.
- 5. L.S. Nair and C.T. Laurencin, Prog. Polym. Sci., 2007, 32, 762–798.
- 6. H. Shen, X. Hu, F. Yang, J. Bei and S. Wang, Biomaterials, 2007, 28, 4219–4230.
- 7. L.H. Chan-Chan, R. Solis-Correa, R.F. Vargas-Coronado, J.M. Cervantes-Uc, J.V. Cauich-Rodríguez, P. Quintana and P. Bartolo-Pérez, Acta Biomater., 2010, 6, 2035–2044.
- 8. Q. Liu, L. Jiang, R. Shi and L. Zhang, Prog. Polym. Sci., 2012, 37, 715–765.
- 9. Z. Zhang, R. Kuijer, S.K. Bulstra, D.W. Grijpma and J. Feijen, Biomaterials, 2006, 27, 1741–1748.
- 10. P. Mainil-Varlet, B. Rahn and S. Gogolewski, Biomaterials, 1997, 18, 257–266.
- 11. H.S. Azevedo and R.R.L. Reis, Biodegrad. Syst. tissue, 2005, 177–202.
- 12. A.G.M. Lu, Lichun, Charles A. Garcia, J. Biomed. Mater. Res., 1999, 46, 236–244.
- 13. M. Meek, K. Jansen and R. Steendam, Res. Part A, 2004.
- 14. T. Xi, M. Sato, A. Nakamura and Y. Kawasaki, 1994, 28, 483–490.
- 15. A.C Albertsson and M. Eklund, J. Appl. Polym. Sci., 1995, 57, 87–103.
- 16. Q. Liu, J. Wu, T. Tan, L. Zhang, D. Chen and W. Tian, Polym. Degrad. Stab., 2009, 94, 1427–1435.
- 17. N. Murthy, S. Wilson and J.C. Sy, Polym. Sci. A Compr. Ref. 10 Vol. Set, 2012, 9, 547–560.
- 18. T. Desmet, R. Morent, N. De Geyter, C. Leys, E. Schacht and P. Dubruel, Biomacromolecules, 2009, 10, 2351–2378.
- 19. Z. Ma, Z. Mao and C. Gao, Colloids Surfaces B Biointerfaces, 2007, 60, 137–157.
- 20. J.M. Goddard and J.H. Hotchkiss, Prog. Polym. Sci., 2007, 32, 698–725.
- 21. G.H. Koo and J. Jang, Fibers Polym., 2008, 9, 674–678.
- 22. M.H. Ho, J.J. Lee, S.C. Fan, D.M. Wang, L.T. Hou, H.J. Hsieh and J.Y. Lai, Macromol. Biosci., 2007, 7, 467–474.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3356b50-0c84-4ab1-a44b-fea520910aad