PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Możliwości wykorzystania egzoszkieletów do wspomagania pracowników w czynnościach wymagających siły, wirtualnych szkoleniach czy rehabilitacji

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Possibilities of the use of exoskeletons to support employees’ strength-dependent activities, virtual training or rehabilitation
Języki publikacji
PL
Abstrakty
PL
Postępująca automatyzacja i robotyzacja procesów produkcji przemysłowej idzie w parze z wykorzystaniem podobnych rozwiązań technologicznych, takich jak roboty noszone, do wspomagania pracowników w środowisku pracy. Najbardziej zaawansowany technologicznie przykład robota noszonego w formie egzoszkieletu aktywnego dla całego ciała nie jest jedynym kierunkiem zastosowań różnych typów egzoszkieletów. Można je również wykorzystać do wspomagania szkolenia pracowników, zdalnego sterowania robotami oraz wspomagania procesu fizjoterapii i rehabilitacji.
EN
The automation and robotization of industrial production processes goes hand in hand with the use of similar technological solutions, such as wearable robots, to support workers. The most technologically advanced example of a wearable robot, i.e. a full-body active exoskeleton, is only one of many possible application of various types of exoskeletons. They can also be used to support workers training, remote control of robots and support the process of physiotherapy and rehabilitation.
Rocznik
Tom
Strony
13--17
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy
Bibliografia
  • [1] SPENCER, D.A. Fear and hope in an age of mass automation: debating the future of work. New Technology. Work and Employment. 2018, 33: 1-12, doi: 10.1111/ntwe.12105.
  • [2] WALLÉN, J. The History of the industrial robot. 2008. http://urn.kb.se/ resolve?urn=urn:nbn:se:liu:diva-56167.
  • [3] JANSSEN, C., et al. History and future of human-automation interaction. International Journal of Human-Computer Studies. 2019, 131: 99-107, doi: 10.1016/j. ijhcs.2019.05.006.
  • [4] SIEGWART, S., NOURBAKHSH, I., SCARAMUZZA, D. Introduction to autonomous mobile robots. The MIT Press, 2011.
  • [5] LUCKCUCK, M., et al. Formal specification and verification of autonomous robotic systems: A survey. ACM Computing Surveys (CSUR). 2019, 52 (5), doi: 10.1145/3342355.
  • [6] WAHRMANN, D., HILDEBRANDT, A., SCHUETZ, C. An autonomous and flexible robotic framework for logistics applications. Journal of Intelligent and Robotic Systems. 2019, 93: 419-431, doi: 10.1007/ s10846-017-0746-8.
  • [7] SPENKO, M., BUERGER, S., IAGNEMMA, K. The DARPA Robotics Challenge Finals: humanoid robots to the rescue. Springer, 2018, doi: 10.1007/978-3-319-74666-1.
  • [8] ASFOUR, T., et al. ARMAR-6: A collaborative humanoid robot for industrial environments. 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing(China). 2018, pp. 447-454.
  • [9] STASSE, O., et al. TALOS: A new humanoid research platform targeted for industrial applications. 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids), Birmingham (UK). 2017, pp. 689-695.
  • [10] WANG, T., et al. Current researches and future development trend of intelligent robot: a review. International Journal of Automation and Computing. 2018, 15(5): 525-546, doi: 10.1007/s11633-018-1115-1.
  • [11] GIL, M., et al. Designing human-in-the-loop autonomous Cyber-Physical Systems. International Journal of Human-Computer Studies. 2019, 130: 21-39, doi: 10.1016/j.ijhcs.2019.04.006.
  • [12] MICHALOS, G., et al. Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP Journal of Manufacturing Science and Technology. 2010, 2(2): 81-91, doi: 10.1016/j. cirpj.2009.12.001.
  • [13] BOGUE, R. Exoskeletons - a review of industrial applications. Industrial Robot. 2018, 45(5): 585-590, doi: 10.1108/IR-05-2018-0109.
  • [14] de LOOZE, M. et al. Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics. 2016, 59(5): 671-681, doi: 10.1080/00140139.2015.1081988.
  • [15] GOPURA, R. et al. (2016), DSV Bandara, Kazuo Kiguchi, G.K.I. Mann, Developments in hardware systems of active upper-limb exoskeleton robots: A review, Robotics and Autonomous Systems. Part B. 2016, 75: 203-220, doi: 10.1016/j.robot.2015.10.001.
  • [16] McFARLAND, T., FISHER, S. Considerations for Industrial Use: A Systematic Review of the Impact of Active and Passive Upper Limb Exoskeletons on Physical Exposures. IISE Transactions on Occupational Ergonomics and Human Factors. 2019, 7 (3-4): 322-347, doi: 10.1080/24725838.2019.1684399.
  • [17] BROOKE, J. SUS: a retrospective. Journal of Usability Studies. 2013, 8(2): 29-40. [18] VENKATESH, V., DAVIS, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science. 2000, 46(2): 186-204, doi: 10.1287/mnsc.46.2.186.11926.
  • [18] VENKATESH, V., DAVIS, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science. 2000, 46(2): 186-204, doi: 10.1287/mnsc.46.2.186.11926.
  • [19] HUYSAMEN, K. et al. Evaluation of a passive exoskeleton for static upper limb activities. Applied Ergonomics. 2018, 70: 148-155, doi: 10.1016/j. apergo.2018.02.009.
  • [20] SPADA, S., et al. Investigation into the Applicability of a Passive Upper-limb Exoskeleton in Automotive Industry. Procedia Manufacturing. 2017, 11: 1255-1262, doi: 10.1016/j.promfg.2017.07.252.
  • [21] STRICKLAND, E. “Iron man” suits are coming to factory floors. IEEE Spectrum. 2019, 56(1): 27-29.
  • [22] CHU, G. et al. The experiments of wearable robot for carrying heavy-weight objects of shipbuilding works. IEEE International Conference on Automation Science and Engineering (CASE), Taipei, 2014, pp. 978-983, doi: 10.1016/j.apergo.2017.11.004.
  • [23] JANKOWSKI, J., ŁACH, P. A comparison of methods of controlling the movement of an exoskeleton, supporting movements of the upper limb using signals of muscle activity and manual controls. Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa. 2020, 11(41): 19-32, doi: 10.5604/01.3001.0014.3705.
  • [24] GRABOWSKI, A., JANKOWSKI, J., WODZYŃSKI, M. Teleoperated mobile robot with two arms: the influence of a human-machine interface, VR training and operator age. International Journal of Human-Computer Studies. 2021, 156, doi: 10.1016/j.ijhcs.2021.102707.
  • [25] GRABOWSKI, A., JANKOWSKI, J. Virtual Reality-based pilot training for underground coal miners. Safety Science. 2015, 72: 310-314.
  • [26] GRABOWSKI, A., JACH, K. The use of virtual reality in the training of professionals: with the example of firefighters. Computer Animation and Virtual Worlds. 2020, 32(2): 1-6, doi: 10.1002/cav.1981.
  • [27] KALWASIŃSKI, D. Interakcja człowieka ze środowiskiem wirtualnym za pomocą rzeczywistych i wirtualnych elementów sterowniczych. Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa. 2017, 8(2): 115-128, doi: 10.5604/01.3001.0010.1575
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3334e1b-5498-4415-aafa-aa625d74feda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.