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BIOFILTER MODEL DEVELOPMENT FOR THE REMOVAL 
OF POLLUTANTS FROM FEEDLOT RUNOFF 

Biofilters are a potential treatment option for removing pollutants from feedlot runoff but little 
research has been done on their use and design. In this study, two mechanism-based models were de-
veloped to simulate biofilter processes: a first-order model and a logistic model. The two models were 
calibrated and evaluated using nitrogen (N) and phosphorus (P) data collected from rainfall events for 
an experimental biofilter at Melrose, Minnesota, USA. The first-order model predicted removal effi-
ciencies better than the logistic model. The sensitivity analysis suggested that the predictions of the 
first-order model are more sensitive to parameter. In addition, the uncertainty analysis suggested that 
the range in predictive errors could be a consequence of uncertainty of estimating parameter from the 
limited data set for the first-order model. In contrast, the uncertainty analysis for the logistic model of 
N suggested that reasons other than the uncertainty in parameter estimation are needed to explain pre-
dictive errors. Overall, the study provides a useful tool for assessing biofilter performance that can 
easily be improved with larger observed data sets. The biofilter model has been implemented in the 
most recent version of the Minnesota feedlot annualized runoff model (MinnFARM). 

1. INTRODUCTION 

Runoff from animal feedlots can contribute to excessive nutrients in receiving wa-
terbodies. Vegetative treatment systems (VTSs) are widely used in Minnesota and else-
where to reduce feedlot runoff pollutants. These systems typically have a component of 
vegetative treatment area (VTA) designed to remove pollutants by infiltration. If de-
signed and managed appropriately, VTAs are effective in feedlot runoff remediation [1]. 
The average removal rates of VTAs for both nitrogen (N) and phosphorus (P) can be as 
large as 70% [2, 3]. However, they can only be used at locations with adequate land area 
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– the typical ratio for VTA area to feedlot area is 0.6 [4]. The VTAs also require mainte-
nance to have good vegetative growth during the life of the VTA, to minimize pollutant 
accumulation by plant harvesting, to avoid channelization of flows within the VTA, and 
must utilize pre-treatment systems such as settling basins [3]. Because of these limita-
tions, alternative treatment options are desired for feedlots. 

Biofilters rely on microbial communities to remove contaminants from liquids. 
These communities grow on moist surfaces of bioactive materials such as wood chips 
or saw dusts. Biofilter medium supplies sufficient carbon for microbial growth. Micro-
organisms decompose carbon compounds using N and P in their surroundings [5]. 
Hence the concentrations of nutrients in feedlot runoff are well suited for direct treat-
ment by microbial growth. In addition, the consumption of nutrients by large numbers 
of biofilter microorganisms could limit their availabilities to coliform bacteria (includ-
ing Escherichia coli) and thereby, potentially, reducing their levels in runoff. Biofilters 
have been shown to be effective in removing contaminants in general but little research 
has been done on their effectiveness to treat feedlot runoff [6–8]. Various engineering 
aspects of biofiltration have been studied such as support media selection, bulk density, 
moisture content, and C/N ratio [8, 9]. Widmer [8] has a good review of these features 
as well as the microbial processes of biofiltration. However, more work is needed to 
quantify the removal processes of contaminants in biofilters. 

The goal of this study was to develop and evaluate predictive algorithms or models 
for the removal of N and P in feedlot runoff by biofilters. A theoretical framework for 
simulating a biofilter treatment system is first provided. This includes the use of a set-
tling chamber for pretreatment, similar to that used in VTSs. Two types of biofilter 
models are then introduced: a first-order model and a logistic model. The next part of 
the paper describes the sampling sites, experimental data used and the model evaluation 
results. The two models are calibrated using N and P data collected at an experimental 
biofilter from rainfall events. Sensitivity coefficients for both models are derived and 
the uncertainty in model predictions is evaluated using a first-order analysis. The use-
fulness of the model to simulate the remediation of feedlot runoff by biofilter is then 
discussed. In addition, these biofilter algorithms have been implemented, but not yet 
released, in the widely used assessment tool in Minnesota called Minnesota feedlot an-
nualized runoff model (MinnFARM) [10, 11]. 

2. MODEL THEORY DEVELOPMENT 

2.1. OVERVIEW 

The Minnesota feedlot annualized runoff model (MinnFARM) was developed to 
simulate the runoff and pollutant loading from feedlots and the removal of these pollu-
tants by VTSs and biofilters [10, 11]. Runoff from feedlot is based on the USDA-NRCS 
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curve number (CN) method [12]. Pollutant loadings for rainfall events at the feedlot 
edge are calculated using event mean concentrations that vary with animal manage-
ment and season. Average annual loadings are computed using loadings correspond-
ing to different events and weighting them by the likelihood of event occurrence. The 
runoffs and pollutant loadings at the outlet of feedlot are used as the inputs into the 
biofilter treatment system. Given the dynamic processes on the feedlot itself, consid-
erable uncertainty exists in the MinnFARM predicted inflow characteristics into the 
biofilter model. A balanced approach is therefore taken in developing the biofilter 
algorithms. The model needs to have sufficient rigor to capture key components of 
filtration system but simple enough to represent processes by a reasonable number of 
parameters and at commensurate levels with the accuracy of inflow characteristics. 

 
Fig. 1. Schematic of the biofilter treatment system 

A schematic of a two-chamber biofilter treatment system is shown in Fig. 1. The 
first chamber is the settling basin that acts as a pretreatment for the removal of settle-
able solids, similar to that used in the VTSs, and the second chamber is the biofilter 
for the removal of contaminants by biochemical filtration. The first chamber is able 
to dampen the flow rate with its relatively large storage and restrictive pipe outlet, 
resulting in a more steady inflow rate into the biofilter. Separate algorithms are used 
and discussed for each of the chambers; however, the primary focus of this paper is 
the validity of the biochemical filtration of the second chamber. The brief description 
of the settling basin model is given to summarize the overall framework of the system. 

2.2. CHAMBER 1. SETTLING BASIN 

For the settling basin, the removal efficiency of settleable solids is determined by as-
suming constant flow rate for a “plug” moving between inlet and outlet, highly turbulent 
flows, a rectangular-shaped chamber with constant depth, no scour from the bottom, and 
uniform concentration at the inlet. The removal efficiency can then be computed as [13] 
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where F1 is the removal efficiency, Q is the volumetric flow rate, A is the surface area of the 
settling basin, s is the settling velocity of a particle of interest, and c is the critical fall 
velocity. The average influent concentration is defined using the mass of contaminants di-
vided by the runoff volume from the feedlot, as determined by the MinnFARM predictions. 
The effluent concentration is then obtained by the influent concentration multiplied by 
1 – F1. The critical fall velocity corresponds to a particle that, under quiescent settling, would 
fall the entire flow depth within the detention time. The settling velocity in Eq. (1) is esti-
mated using the Stokes equation developed for spherical particles with negligible inertia 
forces during settling. The Stokes equation can be written as follows [14] 
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where g is the acceleration of gravity,  is the dynamic viscosity, s is the density of 
manure particles, w is the density of water, and d is the effective diameter of manure 
particles. Within MinnFARM, the dynamic viscosities are given in a look-up table that 
varies with runoff water temperatures from 0 to 40 °C. Densities of manure particles 
were taken for beef cattle, dairy cattle, chicken, horses, and swine [15]. For all breeds, 
manure particles are divided into three different size categories corresponding to repre-
sentative diameters of 2000, 488 and 25 m. The mass fraction of the manure for each 
of these categories is also determined [15]. 

2.3. CHAMBER 2. BIOFILTER BASIN 

For the biofilter basin (Fig. 1), the removal of contaminants by settling is neglected. 
The concentration change over time is defined as 

 dC r
dt

   (3) 

where r is the instantaneous removal rate of concentration. This equation allows the 
concentration of the constituent to be easily determined after it has moved through the 
biofilter. The removal efficiency for the biofilter (F2) is determined as 
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where C0 is the influent concentration (corresponding to the effluent from settling cham-
ber) and Cf  is the concentration after a detention time exposure (Td) to the biofilter. 
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Two different methods were explored to predict the removal rate. The simplest 
method assumes first-order processes [16]. For this method, r is defined as 

 r κ C    (5) 

where  is the decay coefficient (units 1/T). This relationship is ideal for conditions 
when nutrient supply is unlimited and nearly optimal microbial growth. Concentration 
is then defined directly by substituting this relationship into Eq. (3) and by integrating 
between the limits of t = 0, C = C0 and t = Td, C = Cf, that is, 
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The removal efficiency for the first-order model is obtained directly from Eq. (6) as 

   2 1 exp dF κT     (7) 

A different biofilter model can be developed using a logistic process. Here the rate 
of change in concentration is a function of the overall capacity for reduction. The lo-
gistic model can be written as [16] 
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where Cm is an equilibrium concentration at which the rate of removal is zero, λ is a rate 
coefficient (units 1/T) defined as  lCm. Conceptually, Cm is the concentration in the solution 
at which there is no potential gradient between the media and the solution. In contrast to the 
first-order model, the removal rate is limited by this equilibrium concentration. 

The final concentration can be obtained for the logistic model by substituting its 
removal function r in Eq. (3). This relationship can then be integrated using partial frac-
tion between t = 0, C = C0 and t = Td, C = Cf as [16] 
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and therefore the corresponding removal efficiency is defined as 
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2.4. HYDRAULIC VARIABLES 

To simplify the analysis, steady flow for both chambers is assumed. The flow is 
defined in the MinnFARM algorithm using discharge through the outlet pipe for each 
of the chambers. A single, representative hydraulic head is used for each runoff event. 
Pipe flow is assumed and computed as [14] 
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where Qp is the pipe flow through the system, A is the cross-section area of pipe; g is the 
acceleration of gravity, H is head above the crest of the pipe’s inlet, H ʹ is the additional 
elevation corresponding to the difference between the inlet pipe crest and the outlet for 
no tailwater or an elevation for the adjustment of tailwater depth. The symbol L is the 
pipe length, Ke is the entrance-loss coefficient, Kb is the bend-loss coefficient, typical 
values for Ke and Kb are 1.0 and 0.5, respectively, and Kc is the friction-loss coefficient 
that can be computed from a known pipe diameter and Manning’s roughness coeffi-
cient (n) [14]. 

Detention time is computed for pipe-flow conditions as [14] 
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where V is the volume of water in the respective chamber for each rainfall event and Q is 
the outlet pipe flow as previously given by Eq. (11). Volume is computed as 

  V lwh   (13) 

where l, w, and h are the representative length, width, and depth of the water in the 
chamber and  is the porosity of the biofilter. 

3. DATA AND METHODS. MODEL EVALUATION 

3.1. OVERVIEW 

Since the theoretical framework for modeling the settling basin has been evaluated 
elsewhere [14, 17], model evaluation in this paper is focused on the removal within the 
biofilter. An important component of this evaluation is the assessment of model accu-
racy. Observed data of the removal efficiencies of biofilters of feedlot are limited. Ad-
ditional insight into model calibration and validation is obtained by evaluating the sen-
sitivity coefficients and model uncertainties. 
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3.2. EXPERIMENTAL SITE AND DATA COLLECTION 

The experimental site for the observed data is located near Melrose, Minnesota, 
USA. The data were collected as part of grant activities supported by Minnesota De-
partment of Agriculture and 319 EPA Funding [18]. This data set was independent of 
the modeling efforts. A schematic of the biofilter is shown in Fig. 2. The biofilter cham-
ber had a length of 20.4 m and a width of 5.4 m. The depth of biofilter frame was around 
0.85 m and the wood chips were piled to the rim. Pine bark-rich wood chips were used 
as the material for the biofilter. The porosity was estimated at 0.6 by the manager of the 
biofilter. Its outlet pipe had a length of 1.8 m, diameter of 0.1 m, and Manning’s n of 
approximately 0.024. 

 
Fig. 2. Schematic of the biofilter at the evaluation site (modified from Fuchs, 2009) 

Runoff was obtained from a feedlot with a surface area of approximately 0.4 ha. 
The ratio of the biofilter area to feedlot area is only 0.028, which is considerably smaller 
than a typical area ratio for VTAs of 0.6 [4]. The feedlot has a concrete surface and was 
used by approximately 156 dairy cows. Runoff from the feedlot was directed into a set-
tling basin. The outflow from the settling basin was then diverted into the biofilter. Data 
were only collected in the biofilter itself. The evaluation of the model for the settling 
basin was therefore not possible with this data set. 

Observed data were available for seven runoff events during an 18-month demonstra-
tion period from March 2008 to September 2009. The samples for nitrogen and phospho-
rus were taken once per event. The biofilter was uninstalled after this period because of 
the high maintenance cost. No other data from feedlot runoffs were available for use in 
this study. 

Key characteristics of these events are summarized in Table 1. As shown in Fig. 2, water 
depths were monitored by ultrasonic sensors at three sample wells within the biofilter. The 
locations of these wells are labeled as circles. Water samples were collected from these three 
locations within the biofilter using ISCO samplers. Initial concentrations, C0, were measured 
using samples collected at the left well. Final concentrations, Cf, were measured using sam-
ples collected at the right well except for the event of 14 March 2009 where the observed 
concentration was measured at the middle well. The collected samples were measured in 
the laboratory for TKN (total Kjeldahl nitrogen, measuring the total concentration of organic 



68 H. WAN et al. 

 

nitrogen and ammonia) and TP (total phosphorus, measuring all the forms of phosphorus), 
using EPA 351.2 rev 2.0 and EPA 3653 methods, respectively. 

T a b l e  1 

Water depths D, concentrations C0, Cf, and detention times Td for the experimental sites 

Date D [m] C0 for N 
[mg·dm–3] 

Cf for N 
[mg·dm–3] 

C0 for P 
[ mg·dm–3] 

Cf for P 
[mg·dm–3] 

Td 

 [h] 
9/15/2008 0.31 188 29.6 40.9 26.5 4.3 
 3/6/2009 0.51 705 198 25.2 7.1 5.5 
3/14/2009 0.48 637 259a 28.7 20.6a 2.7 
3/16/2009 0.39 454 321 39.8 12.2 4.8 
 4/3/2009 0.30 525 239 78.8 43.9 4.2 
6/19/2009 0.24 367 134 81.3 28.7 3.8 
9/10/2009 0.29 54.5 1.81 33.5 21.2 4.2 

aCf values for N and P on March 14, 2009 were measured at the middle point of the biofilter. 
 
Detention time (Td) is an important hydraulic characteristic of the biofilter and is 

also reported in Table 1. It was estimated from Eq. (12) for all of the observed events. 
The biofilter volume was determined using the surface area and the 24-h average depth 
at the middle well of the biofilter. The 24-h average depth at the middle well was used 
to determine the average flow depth h in the biofilter. Constant outflow rate was com-
puted using the pipe flow relationship given by Eq. (11). The sum of Ke and Kb was set 
at 1.5 to account for energy losses at the pipe’s inlet [14]. The friction loss coefficient, 
Kc, was calculated as 12.68 m–1 from Manning’s n [14]. The value of H was set as 0.35 
of the water depth. The value of H' was set as zero. 

3.3. MODEL ACCURACY 

The model accuracy was assessed by comparing the predicted and observed removal 
efficiencies. Observed removal efficiencies were computed directly from the observed 
data. The predicted removal efficiency for the first-order model was computed using 
Eq. (7) and for the logistic model using Eq. (10). Accuracy was assessed using the nor-
malized mean square error (NMSE) [19]. A NMSE of zero corresponds to a perfect fit 
between predicted and observed values. A NMSE > 1 indicates that the observed data 
is better represented by the mean of the data than using the model predicted values. 

3.4. SENSITIVITY ANALYSIS AND PARAMETER UNCERTAINTY 

Sensitivity and model uncertainty analyses regarding parameters are used [20]. Sen-
sitivity is defined as the change in the model outputs for a change in the parameter values 
and is therefore represented mathematically as [21] 
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where S(β) is the sensitivity coefficient,  is the model predicted value, and  is the 
parameter of interest. For the first-order model of Eq. (7), the sensitivity coefficients of 
removal efficiency can be easily obtained with respect to the first-order coefficient as, 
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For the logistic model of Eq. (10), the sensitivity coefficient of removal efficiency 
corresponding to  l is defined as 
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Relative sensitivity coefficients are often more useful in interpreting results. They 
are defined as [21] 
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The relative sensitivity coefficients for the first-order model and the logistic model 
are defined directly from Eqs. (7) and (10) as 
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The sensitivity coefficients and relative sensitivity coefficients are not constant due 
to varying inflow conditions, detention times, and biofilter properties. They provide 
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fundamental information about the two models and specific values will be given for the 
conditions of the experimental site in the Results and Discussion section. Sensitivity 
coefficients also are important in determining the uncertainty in predicted response us-
ing a first-order analysis. With the first-order analysis, the predicted response function 
is linearized by using a Taylor series expansion with neglected second and higher order 
terms. The variance of the predicted value is then defined as [22] 
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1 1
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j i i j
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where Var() is the variance of prediction, S(i) and S(j) are the sensitivity coefficients 
for the ith and jth parameters, and Cov(i, j) is the covariance between i and j. For 
the special case of parameters that are independent, the first-order variance of predicted 
response is defined as 
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where Var(i) is the variance of the parameter i and Var() is a measure of uncertainty 
in prediction. Therefore for the special case of a single input parameter of the decay 
coefficient, the variance of the prediction is simply estimated as the product of squared 
equations 15a or 15b and the variance of the decay coefficient. 

4. RESULTS AND DISCUSSION 

4.1. PARAMETERS ESTIMATION 

First-order decay coefficient . The decay coefficient  of the first-order model was 
computed directly for each event from Eq. (6) using measured influent (C0) and effluent 
(Cf) concentrations and estimated detention time. Decay coefficients for N and P for the 
seven rainfall events are given in Table 2. 

Relationships between first-order model decay coefficient  and possible independ-
ent variables of cumulative temperature, precipitation depth, average flow depth, and 
detention time were investigated using regression techniques. Cumulative temperature 
is defined as the sum of average daily air temperature greater than 0 °C since the start 
of the year, which is a surrogate for the cumulative microbial growth. The only signifi-
cant predictor variable was found to be cumulative temperature for N. Trends with cu-
mulative temperature are shown in Fig. 3, where linear regression indicates better fit 
than non-linear. The discussion as follows is limited to linear relationship only. The 
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coefficient of determination is 0.65 (compared to that of less than 0.1 for either precip-
itation, average flow depth or detention time) and the linearity is significant with a p-
value less than 0.05.  

T a b l e  2 

Estimated decay coefficients for individual events 

Date 
First-order coefficient

 [h–1] 
Logistic coefficient 
 l [dm–3·h–1·mg–1] 

N P N P 
9/15/2008 0.43 0.1 0.0068 0.0032
3/6/2009 0.23 0.23 0.0007 0.02
3/14/2009 0.33 0.12 0.0009 0.0053
3/16/2009 0.07 0.25 0.0002 0.0125
4/3/2009 0.19 0.14 0.0006 0.0025
6/19/2009 0.27 0.27 0.0013 0.0061
9/10/2009 0.81 0.11 0.1881 0.0043
Mean 0.33 0.17 0.0018 (0.0284)a 0.0077
Variance 0.057 0.005 6.25×10–6 (4.97×10–3)a 4.03×10–5 

aThe parentheses include the likely outlier of September 10, 2009.

 
Fig. 3. Trend of the first-order decay coefficient  

of N with cumulative temperature 
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A larger data set is obviously needed before more definitive statements can be made 
about the effectiveness of the regression equation. It is, however, rational to expect a mi-
crobial population increase with cumulative temperature and a corresponding increase 
in . No significant predictor variable was found for the P first-order model (coefficient 
of determination is less than 0.3 for all of the four variables). Significant regression 
results are summarized in Table 3. 

T a b l e  3 

Significant regression relationships for the first-order and logistic coefficients 

Coefficient T or D range Relationship R2 p-value MSE 
 for N

0–25 °C 
 = 0.0002T + 0.1931a 0.65 <0.05 0.024 

 for P  = –3×10–5T + 0.201a 0.27 >0.1 4.67×10–3 

 l for N  l = 2.43×10–6T + 0.0004a 0.94 <0.01 4.74×10–7 
 l for P 0.2–0.5 m  l = 0.0425D – 0.0077b 0.47 0.09 2.59×10–5 

aT denotes cumulative temperature – the sum of average daily air temperature 
higher than 0 °C since the start of the year. 

bD denotes average flow depth. 

Equilibrium concentration Cm. Attempts to estimate logistic-model parameters of 
 l and Cm were initially done by trying to calibrate both of them. Pairs of values were 
carefully selected. The optimal set of parameters was evaluated by using the minimal 
sum of squares of the difference between predicted and observed removal efficiencies. 
This approach resulted in an estimate of Cm that was physically unrealistic. Thereafter 
Cm was set at 1 mg·dm–3 for both N and P – this value was less than the minimum observed 
concentrations of N and P at the biofilter outlet. Physically, the value of Cm is likely 
a function of time. For the removal of phosphorus of enhanced sand filtration, Erickson 
et al. [23] found Cm varied by the relationship of: 

  1
01 e m

m inC C       (19) 

where Cin is the influent concentration, ∑M is the instantaneous sum of phosphorus 
mass retained, β0 and β1 are two rate coefficients. Because of the limited data available, 
Cm is a constant in this study. 

Logistic Decay coefficient  l. For a specified Cm, only  l or λ needs to be estimated from 
the observed data. Values of  l are selected for the study. For the specified Cm values and 
for the detention times given in Table 1, the decay coefficient  l was computed directly from 
measured influent and effluent concentrations using Eq. (9). The results for N and P are also 
given in Table 2 for each observed event. The mean and variance for the estimated  l 
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values for N were calculated with and without the event of 10 September 2009, respec-
tively. Values that included this likely outlier are given in parentheses. 

 
Fig. 4. Trend of the logistic decay coefficient of N with cumulative temperature  

(with the event of September 10, 2009 removed as outlier) 

 
Fig. 5. Trend of the logistic decay coefficient of P on the average flow depth 
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Trends in  l as a function of independent variables of cumulative temperature, pre-
cipitation depth, average flow depth, and detention time were also explored using re-
gression techniques. Linear regression indicates better fit than non-linear one for both 
N and P. The discussion as follows is limited to linear relationships only. With the re-
moval of the apparent outlier for the event of 10 September 2009 (at which the  l value 
0.1881 is more than 100 times larger than the  l from any other event), the significant 
predictor variable was found to be cumulative temperature for N. The coefficient of 
determination is 0.94 for N and the linearity is significant with a p-value less than 0.01 
(Fig. 4). For P, average flow depth and detention time are significant predictor variables, 
with the coefficients of determination of 0.47 and 0.45, respectively. The average flow 
depth is the strongest predictor with a p-value of 0.09. Trends in  l with the average 
flow depth are shown in Fig. 5. Only one predictor of average flow depth was selected 
for the logistic model of P in order to avoid overfitting. Significant regression results 
are summarized in Table 3. 

4.2. MODEL ACCURACY 

N model. For this study, the predicted values were computed using estimates of the 
first-order and logistic coefficients obtained from regression relationships of Table 3 
and as well by using the average values. Observed and predicted removal efficiencies 
for N are shown in Table 4.  

T a b l e  4 

Accuracy of the removal efficiency (dimensionless) 
for N using first-order and logistic models 

Date Observed
value 

Using regression Using averages 
First-order Logistic First-order Logistic  

9/15/2008 0.84 0.93 0.84 0.76 0.59 
3/6/2009 0.72 0.66 0.60 0.84 0.87 
3/14/2009 (mid) 0.59 0.41 0.40 0.59 0.76 
3/16/2009 0.29 0.61 0.47 0.79 0.80 
4/3/2009 0.54 0.57 0.51 0.75 0.80 
6/19/2009 0.63 0.72 0.77 0.71 0.71 
9/10/2009 0.97 0.92 0.58 0.75 0.29 
NMSE 0.55 0.88 1.30 3.15 

 
Both  and  l values for N were determined by their regression relationships with 

cumulative temperature. For N, using the regression estimate of , the NMSE for the 
first-order model was 0.55; and using that of  l, the corresponding NMSE of the logistic 
model was 0.88. Also shown in Table 4 are the predicted removal efficiencies calculated 
using the average  and  l as given in Table 2. For N, the NMSEs are 1.30 and 3.15 for 
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the first-order and logistic models, respectively. Not surprisingly, the observed removal 
efficiencies are predicted more accurately using coefficients estimated from regression 
relationships than using average values. The first-order model more accurately predicted 
observed removal efficiencies than the logistic model. 

P model. Observed and predicted removal efficiencies for P are shown in Table 5. 
Since no significant regression relationship could be established for the first-order 
model, only the coefficients for the logistic model were represented by the correspond-
ing regression result (of average flow depth) in Table 3. The predicted removal efficien-
cies for both the first-order and logistic models were estimated using the average values 
of  and  l in Table 2. For these averages, the NMSEs for the first-order and logistic 
models are 0.6 and 1.06, respectively. The first-order model therefore represented the 
observed removal efficiencies more accurately than the logistic model. The regression 
estimates of the  l for the logistic model resulted in a substantial improvement in the 
prediction accuracy: The NMSE using the regression estimates reduced NMSE from 
1.06 to 0.75. 

T a b l e  5 

Accuracy of the removal efficiency (dimensionless)  
for P using first-order and logistic models 

Date Observed
value 

Using regression Using averages 
First-order Logistic First-order Logistic  

9/15/2008 0.35 N/A 0.48 0.52 0.57 
3/6/2009 0.72 N/A 0.64 0.61 0.50 
3/14/2009 (mid) 0.28 N/A 0.48 0.37 0.36 
3/16/2009 0.69 N/A 0.62 0.56 0.58 
4/3/2009 0.44 N/A 0.62 0.51 0.71 
6/19/2009 0.65 N/A 0.43 0.48 0.70 
9/10/2009 0.37 N/A 0.38 0.51 0.51 
NMSE N/A 0.75 0.60 1.06 

4.3. MODEL SENSITIVITY AND UNCERTAINTY 

Relative sensitivities. They were calculated using Eqs. (17a) and (17b). The aver-
ages and ranges of relative sensitivity coefficients among the seven events for N and P 
are reported in Table 6. The model sensitivity to its parameters should ideally be equal 
to the actual sensitivity of the biofilter’s removal efficiencies to its media characteristics. 
Using regression relationship for N, a 1% change in  corresponds to an approximate 
0.57% change in the predicted removal efficiency for the first-order model; whereas for 
the logistic model, a 1% change in  l corresponds to an approximate change of 0.39% 
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in predicted removal efficiency. Using average values for N, a 1% change in  corre-
sponds to an approximate 0.59% change in the predicted removal efficiency for the first- 
-order model; whereas for the logistic model, a 1% change in  l corresponds to an ap-
proximate change of 0.31% in predicted removal efficiency. Using average values for P, 
a 1% change in  corresponds to an approximate 0.77% change in the predicted removal 
efficiency for the first-order model; whereas for the logistic model, a 1% change in l 
corresponds to an approximate change of 0.52% in predicted removal efficiency. For both 
N and P, the first-order model is more sensitive to  than the logistic model is to l. 

T a b l e  6 

Relative sensitivities Sr (dimensionless) for N and P 

Model Sr(N) Sr(P)
First-order () Logistic ( l) First-order () Logistic ( l) 

Regression Mean 0.57 0.39 N/A 0.26 
Range (0.21, 1.27) (0.16, 0.86) N/A (0.13, 0.52) 

Average Mean 0.59 0.31 0.77 0.52 
Range (0.36, 1.11) (0.16, 0.57) (0.51, 1.05) (0.32, 0.82) 

 
For N, relative sensitivities for the first-order models are similar for coefficients 

estimated using regression relationships and those using average values, relative sensi-
tivities for the logistic models are higher for coefficients estimated using regression re-
lationships than those using average values. For P, relative sensitivities for the logistic 
models are lower for coefficients estimated using regression relationships than those 
using average values. For N and P combined, the relative sensitivities did not show clear 
pattern in terms of the distinction between coefficients estimated using regression rela-
tionships and those using average values. It is easy to understand that the relative sen-
sitivities of coefficients do not depend on specified data used for calculation, but the 
mechanism of models. 

Model uncertainty. The first-order variances of predicted values are calculated us-
ing Eq. (18b) for the seven events. Their mean values are then computed using the geo-
metric mean, because of the large range in variance of prediction. Results are given in 
Table 7 for N and P. The variances of  and  l corresponding to average-estimated 
coefficients are estimated using their variance in the seven events. The variances of  
and  l using regression relationships are estimated using the MSEs in Table 3 (except  
for P, where regression relationship is not available). Uncertainties in the slope and in-
tercept values were therefore not included in these estimates. To illustrate key concepts, 
and because of limited data set for regression analysis, discussion will focus on the re-
sults obtained corresponding to average-estimated coefficients. For N, standard devia-
tions of uncertainty are SD(ηN, 1) = 0.24, SD(ηN, L) = 0.25 for the first-order and logistic 
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models, respectively; whereas the standard deviations of uncertainty are SD(ηP, 1) = 0.14 
and SD(ηP, L) = 0.19 for predicted P values for the first-order and logistic models, re-
spectively. For both N and P, to some degree the first-order model has lower model 
uncertainty than the logistic model. 

T a b l e  7 

Variances of predictions (dimensionless) for N and P 

Model N Var(N) P Var(P)
First-order () Logistic ( l) First-order () Logistic ( l) 

Regression Meana 0.025 0.016 N/A 0.0002 
Range (0.002, 0.086) (0.0002, 0.1845) N/A (0.00005, 0.0005) 

Average Meana 0.059 0.064 0.02 0.036 
Range (0.044, 0.069) (0.025, 0.120) (0.014, 0.022) (0.027, 0.041) 

aGeometric mean.
 
Moreover, of particular interest in this study is determining whether the difference 

between predicted and observed removal efficiencies given in Tables 4 and 5 can be 
attributed to uncertainty in the estimate of  for the first-order model or  l for the logistic 
model. For many probability density functions, the probability is small for a difference 
value greater than two standard deviations of uncertainty. For N with exclusion of the 
likely outlier of 16 March 2009, for all seven events the differences between the ob-
served and predicted N removal efficiencies for the first-order model (see Table 4) using 
averages are within one SD(ηi). Differences between observed and predicted values 
could thus be a consequence of the uncertainty in estimating . However for the logistic 
model, four out of seven differences for using average are greater than or equal to one 
SD(ηN, L), with two differences larger than two SD(ηN, L). Differences here are more 
likely a consequence of not adequately representing processes with the logistic model 
and therefore not in the uncertainty in estimating  l. 

For P, the first-order model and the logistic model have similar performance in rep-
resenting the processes by the decay parameter. For the first-order model using the av-
erage parameter, two differences are larger than and one difference is equal to one 
SD(ηP, l). For the logistic model using the average parameter, three differences are larger 
than one SD(ηP, L). No difference is larger than two SD(ηP, l) or SD(ηP, L). For both mod-
els, differences between observed and predicted values could mostly attribute to the 
uncertainty in estimating decay parameter. However, to point it out here, SD(ηP, l) has 
a value substantially lower than that of SD(ηP, L). 

In general, the first-order models had better prediction accuracy than the logistic 
models for both N and P. The first-order models are therefore better suited to represent 
the N and P removal processes. The superior performance of first-order model can be 
attributed to: (1) N and P supplies from feedlot runoff were sufficient during runoff 
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events, which satisfied the condition for first-order model; (2) logistic model had a Cm 
coefficient, little information was available to estimate this parameter. Logistic model 
might be more useful if Cm is investigated with carefully designed experiments in the 
future. In addition, the first-order model is more sensitive to  than the logistic model 
is to  l for both N and P, likely because the logistic model represented the process less 
well as the first-order model. 

It is not surprising that the removal efficiencies varied greatly between sampling 
events. Collecting data under field conditions for complex runoff events is challenging. 
Many factors can impact contaminant removal processes, such as pH and concentration 
of inhibiting materials in the biofilter. More carefully designed experiments are needed 
to fully explore these factors. The results of these experiments are anticipated to be eas-
ily incorporated into the biofilter models proposed in this study. 

5. CONCLUSIONS 

The first-order model better represented biofilter processes than the logistic model. 
Firstly, the first-order model predicted removal efficiencies with greater accuracy than 
the logistic model. The NMSEs were always smaller for the first-order model using 
estimated coefficients of either regression relationships (if a regression relationship is 
available) or averages for both nitrogen (N) and phosphorous (P). Second, the uncer-
tainty analysis for the logistic model of N suggested that reasons other than the uncer-
tainty in estimating the decay coefficient are needed to explain the predictive errors. In 
contrast, predictive errors are within the reasonable range corresponding to the uncer-
tainty in estimating the decay coefficients of first-order model for both N and P, which 
suggested that the first-order model is adequate. Thirdly, the predicted values of first-
order model are more sensitive to its decay coefficient than the logistic model. 

More data are needed to better define the decay coefficients and to evaluate the model 
performance. Additional data would also be helpful in evaluating the effectiveness of 
models to represent different design dimensions and alternative biofilter media. Nonethe-
less, the analytical work has provided a useful theoretical foundation for further modeling 
exploration and can ultimately be helpful in establishing engineering standards. 

SYMBOLS 

F1 – removal efficiency of the settling basin 
Q – volumetric flow rate, m3·s–1 
A – surface area of the settling basin, or cross-section area of a pipe,  m2 

s – settling velocity of a fluid particle, m·s–1 
c – critical fall velocity, m·s–1 
g – acceleration of gravity, 9.8 m·s–2 
 – dynamic viscosity of a fluid, kg·s–1·m–1 
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ρs – density of manure particles, kg·m–3 
ρw – density of water, kg·m–3 
d – effective diameter of manure particles, μm 
F2 – removal efficiency of the biofilter 
C0 – influent concentration, mg·dm–3 
Cf  – effluent concentration, mg·dm–3 
Td  – detention time, h 
 – first-order decay coefficient, h–1 
 l – logistic decay coefficient, dm–3·h–1·mg–1 
Cm – equilibrium concentration at which the rate of removal is zero, mg·dm–3 
Qp – pipe flow rate, m3·s–1 
L – pipe length, m 
H – head above the crest of the pipe’s inlet, m 
Hʹ – additional head to H, m 
Ke – entrance-loss coefficient, dimensionless 
Kb – bend-loss coefficient, dimensionless 
Kc – friction-loss coefficient, m–1 
n – Manning’s roughness coefficient, s·m–1/3 
V – water volume in the chamber, m3 

l, w, h – length, width, and depth of the chamber, m 
φ – porosity of the biofilter, dimensionless fraction 
NMSE – normalized mean square error, dimensionless 
β – decay parameter,  or  l 
S( ) – sensitivity coefficient of  
Sr( ) – relative sensitivity coefficient of , dimensionless 
 – model prediction of F2, dimensionless fraction 
Var() – variance of model prediction η, dimensionless 
SD() – standard deviation of model prediction, dimensionless 
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