PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anisotropic turbulent viscosity and large-scale motive force in thermally driven turbulence at low Prandtl number

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fully developed turbulent Boussinesq convection is known to form large-scale rolls, often termed the ‘large-scale circulation’ (LSC). It is an interesting question how such a large-scale flow is created, in particular in systems when the energy input occurs at small scales, when inverse cascade is required in order to transfer energy into the large-scale modes. Here, the small-scale driving is introduced through stochastic, randomly distributed heat source (say radiational). The mean flow equations are derived by means of simplified renormalization group technique, which can be termed a ‘weakly nonlinear renormalization procedure’ based on consideration of only the leading order terms at each step of the recursion procedure, as full renormalization in the studied anisotropic case turns out unattainable. The effective, anisotropic viscosity is obtained and it is shown that the inverse energy cascade occurs via an effective ‘motive force’ which takes the form of transient negative, vertical diffusion.
Rocznik
Strony
409--436
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Department of Magnetism, Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
Bibliografia
  • 1. V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence, Springer, Berlin, 1992.
  • 2. A.C. Newell, B. Rumpf, Wave turbulence, Annual Review of Fluid Mechanics, 43, 59–78, 2011.
  • 3. S. Nazarenko, Wave Turbulence, Springer, Berlin, 2011.
  • 4. E. Monsalve, M. Brunet, B. Gallet, P.-P. Cortet, Quantitative experimental observation of weak inertial-wave turbulence, Physical Review Letters, 125, 254502, 2020.
  • 5. S.M. Tobias, F. Cattaneo, S. Boldyrev, MHD dynamos and turbulence, in: Ten Chapters in Turbulence, P.A. Davidson, Y. Kaneda, and K.R. Sreenivasan [eds.], Cambridge University Press, pp. 351–404, Cambridge, 2013.
  • 6. P. Sagaut, C. Cambon, Homogeneous turbulence dynamics, Springer International Publishing AG, Cham, Switzerland, 2018.
  • 7. H.W. Wyld Jr., Formulation of the theory of turbulence in an incompressible fluid, Annals of Physics, 14, 143–165, 1961.
  • 8. S. Ma, G.F. Mazenko, Critical dynamics of ferromagnets in 6- dimensions: general discussion and detailed calculation, Physical Review B, 11, 4077–4100, 1975.
  • 9. D. Forster, D.R. Nelson, M.J. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Physical Review A, 16, 732–749, 1977.
  • 10. V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, Journal of Scientific Computing, 1, 3–51, 1986.
  • 11. L.M. Smith, S.L. Woodruff, Renormalization-group analysis of turbulence, Annual Review of Fluid Mechanics, 30, 275–310, 1998.
  • 12. W.D. McComb, Homogeneous, Isotropic Turbulence. Phenomenology, Renormalization and Statistical Closures, Oxford University Press, Oxford, 2014.
  • 13. S. Sukoriansky, B. Galperin, QNSE theory of turbulence anisotropization and onset of the inverse energy cascade by solid body rotation, Journal of Fluid Mechanics, 805, 384–421, 2016.
  • 14. R.H. Kraichnan, The structure of isotropic turbulence at very high Reynolds numbers, Journal of Fluid Mechanics, 5, 497–543, 1959.
  • 15. R.H. Kraichnan, Lagrangian-history closure approximation for turbulence, Physics of Fluids, 8, 575–598, 1965.
  • 16. A. Yoshizawa, Hydrodynamic and Magnetohydrodynamic Turbulent Flows: Modelling and Statistical Theory, Kluwer Academic Publishers, 1998.
  • 17. N. Yokoi, Turbulence, transport and reconnection, in: Topics, in: Magnetohydrodynamic Topology, Reconnection and Stability Theory, D. MacTaggart & A. Hillier (eds.), vol. 59, CISM International Centre for Mechanical Sciences, Springer, 2020.
  • 18. K.A. Mizerski, Renormalization group analysis of the turbulent hydromagnetic dynamo: effect of non-stationarity, Astrophysical Journal Supplement Series, 251, 21, 2020.
  • 19. K.A. Mizerski, Renormalization group analysis of the turbulent hydromagnetic dynamo: effect of anizotropy, Applied Mathematics and Computation, 405, 126252, 2021a.
  • 20. P. Camps, K. Misselt, S. Bianchi, T. Lunttila, Ch. Pinte, G. Natale, M. Juvela, J. Fischera, M.P. Fitzgerald, K. Gordon, M. Baes, J. Steinacker, Benchmarking the calculation of stochastic heating and emissivity of dust grains in the context of radiative transfer simulations, Astronomy and Astrophysics, 580, A87, 2015.
  • 21. M. Serra-Garcia, A. Foehr, M. Molerón, J. Lydon, Ch. Chong, Ch. Daraio, Mechanical autonomous stochastic heat engine, Physical Review Letters, 117, 010602, 2016
  • 22. S. Lepot, S. Aumaitre, B. Gallet, Radiative heating achieves the ultimate regime of thermal convection, PNAS Proceedings of the National Academy of Sciences of the United States of America, 115, 8937–8941, 2018.
  • 23. V. Bouillaut, S. Lepot, S. Aumaitre, B. Gallet, Transition to the ultimate regime in a radiatively driven convection experiment, Journal of Fluid Mechanics, 861, R5, 2019.
  • 24. S. Grossmann, D. Lohse, Scaling in thermal convection: a unifying theory, Journal of Fluid Mechanics, 407, 27–56, 2000.
  • 25. D. Funfschilling, G. Ahlers, Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell, Physical Review Letters, 92, 194502, 2004.
  • 26. E. Brown, G. Ahlers, The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection Journal of Fluid Mechanics, 638, 383–400, 2009.
  • 27. H.-D. Xi, S.-Q. Zhou, Q. Zhou, T.-S. Chan, K.-Q. Xia, Origin of the temperature oscillation in turbulent thermal convection, Physical Review Letters, 102, 044503, 2009.
  • 28. S. Horn, P.J. Schmid, J.M. Aurnou, Unravelling the large-scale circulation modes In turbulent Rayleigh–Bénard convection, Europhysics Letters, 136, 14003, 2022.
  • 29. P.-E. Roche, The ultimate state of convection: a unifying picture of very high Rayleigh numbers experiments, New Journal of Physics, 22, 073056, 2020.
  • 30. L. Zwirner, A. Tilgner, O. Shishkina, Elliptical instability and multiple-roll flow modes of the large-scale circulation in confined turbulent Rayleigh–Bénard convection, Physical Review Letters, 125, 054502, 2020.
  • 31. A. Vasiliev, P. Frick, A. Kumar, R. Stepanov, A. Sukhanovskii, M.K. Verma, Transient flows and reorientations of large-scale convection in a cubic cell, International Communications in Heat and Mass Transfer, 108, 104319, 2019.
  • 32. E.A. Spiegel, G. Veronis, On the Boussinesq approximation for a compressible fluid, Astrophysical Journal, 131, 442–447, 1960.
  • 33. K.A. Mizerski, Foundations of Convection with Density Stratification, Springer Nature, Cham, Switzerland, 2021.
  • 34. W.D. McComb, W. Roberts, A.G. Watt, Conditional-averaging procedure for problems with mode-mode coupling, Physical Review A, 45, 3507–3515, 1992.
  • 35. W.D. McComb, A.G. Watt, Conditional averaging procedure for the elimination of the small-scale modes from incompressible fluid turbulence at high Reynolds numbers, Physical Review Letters, 65, 3281–3284, 1990.
  • 36. W.D. McComb, A.G. Watt, Two-field theory of incompressible-fluid turbulence, Physical Review A, 46, 4797–4812, 1992.
  • 37. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, part 2, Landau and Lifshitz Course of Theoretical Physics, Vol. 9, Butterworth-Heinemann, Oxford, 1987.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a328b702-4cc1-4468-83c8-36e37eca31a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.