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The fully developed turbulent Boussinesq convection is known to form
large-scale rolls, often termed the ‘large-scale circulation’ (LSC). It is an interest-
ing question how such a large-scale flow is created, in particular in systems when
the energy input occurs at small scales, when inverse cascade is required in order to
transfer energy into the large-scale modes. Here, the small-scale driving is introduced
through stochastic, randomly distributed heat source (say radiational). The mean
flow equations are derived by means of simplified renormalization group technique,
which can be termed a ‘weakly nonlinear renormalization procedure’ based on con-
sideration of only the leading order terms at each step of the recursion procedure,
as full renormalization in the studied anisotropic case turns out unattainable. The
effective, anisotropic viscosity is obtained and it is shown that the inverse energy cas-
cade occurs via an effective ‘motive force’ which takes the form of transient negative,
vertical diffusion.
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1. Introduction

The investigation of turbulent flows involves description of a very
complicated nonlinear dynamics of small scale fluctuations, hence it is extremely
difficult and requires sophisticated mathematical tools. In particular the emer-
gence of large-scale coherent structures is a topic of interest, i.e. the transfer of
energy from small scales to the large scales termed the inverse energy cascade. To
simplify the problem various assumptions have been put forward and in partic-
ular a common simplification in the theoretical approaches is the assumption of
the so-called weak turbulence, which corresponds to weak amplitude of turbulent
pulsations and linearization of their evolution, cf. [1–3] where this idea has been
thoroughly explained and related to the general context of fully developed turbu-
lence; moreover, the latter references consider also the nonlinear wave turbulence
with resonant wave interactions in the limit of a small interaction parameter. As
argued in [4] or [5] in some cases the regime of weak turbulence can be sustained
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for long times, nevertheless, it is much more common for natural systems to
develop into the strong turbulence regime, where the evolution of turbulent fluc-
tuations becomes non-linear. An interested reader is directed to [6], for a review
of various approaches and a physical description of turbulent flows, in particular
chapter 10 of that book, concerned with buoyancy driven turbulence.

In order to treat the fully nonlinear regime and reliably estimate turbulent dif-
fusion the renormalization technique has been developed and applied to strongly
turbulent flows. This is a statistical closure approximation which is based on sys-
tematic, subsequent (iterative) elimination of thin wave-number bands from the
Fourier spectrum of rapidly evolving variables (cf. [7–9]). Notable contributions
come from [10–12] who have published comprehensive works on renormalization
of hydrodynamic equations. This approach has also been applied recently to
rotating and thus anisotropic turbulence by [13].

Another powerful method which allows to relate the turbulent diffusion to
the turbulent energy tensor is the so-called two-scale direct-interaction approxi-
mation (TSDIA) dating back to Kraichnan [14, 15]. It involves introduction of
a tensorial response function to an infinitesimal impulse-force and application
of a two-scale approach in space and time related by the same parameter of ex-
pansion. Despite its limitations it allows to describe the turbulent viscosity in
strong turbulence once the statistical properties of the underlying small-scale
chaotic flow are known, see [16, 17] for a review.

Recent investigations of [18, 19] have involved applications of the renormal-
ization group method to study the effect of non-stationarity and anisotropy on
the magnetohydrodynamic turbulence in what could be called an ‘intermediate
regime of turbulence’ or ‘weakly nonlinear turbulence’, in contrast to a simple,
linear, weak turbulence regime. Due to high complexity of the mathematical ap-
proach in the case of non-stationary and non-isotropic turbulence the effect of
nonlinear evolution of the fluctuations has been included only at leading order
at each step of the renormalization procedure. As a result, although reliable es-
timates of the turbulent electromotive force could be made the wave number de-
pendence of all the turbulent coefficients likewise of the energy and helicity spec-
tra was not fully resolved. Because the problem of turbulent convection is also
anisotropic due to action of vertical buoyancy, full renormalization of the Boussi-
nesq equations turns out unattainable thus the latter approach corresponding to
‘intermediate turbulence’ is adopted here in order to study the physical mech-
anism of formation of the large-scale convection cells from a small-scale energy
input. The nonlinear evolution of turbulent pulsations is thus included through
calculation of leading order expressions for the effective turbulent viscosity at
each step of the iterative renormalization procedure, which corresponds to ex-
pansion of the full, renormalized coefficients up to the first order in the Reynolds
number. The turbulence is assumed to be driven by a small-scale, statistically
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random (Gaussian) heat source and the Prandtl number, that is the ratio of the
viscosity to thermal diffusivity is assumed small, so that the temperature dynam-
ics is dominated by rapid diffusion and the heat source. Renormalized dynamical
equations for the mean flow are obtained which contain turbulent coefficients
describing the net nonlinear effect of short-wavelength fluctuations, such as the
turbulent viscosity and the turbulent coefficient describing the effective ‘motive
force’ at large scales, which takes the form of negative vertical diffusion in the
studied regime. The results correspond to a somewhat initial stage of forma-
tion of the large-scale convective flow, as the ‘intermediate turbulence’ regime is
necessarily eventually destroyed and strong turbulence must emerge. It is worth
mentioning that random heat sources are sometimes considered e.g. in the dy-
namics of dusty media as stochastically heated dust grains play an important
role in transport of radiation (cf. [20]) and in the problem of stochastic heat
engines (cf. [21]); also [22, 23] have designed and experimental set-up and stud-
ied the development of radiatively driven convection to the ‘ultimate’ turbulent
regime defined by the scaling of the heat flux with square root of the Rayleigh
number.

The dynamics of the turbulent Boussinesq convection involves formation of
large-scale circulation (LSC) or the so-called ‘wind of turbulence’ (cf. [24–28]).
In cylindrical geometry with comparable vertical and horizontal size, the LSC is
believed to result from a quasi-two-dimensional, coupled horizontal sloshing and
torsional (ST) oscillatory mode. Roche [29] studied the physics of transition to
the ‘ultimate state’ of convection at a very high Rayleigh number (a measure of
relative strength of the buoyancy force with respect to diffusion) and developed
a model based on boundary layer stability. Zwirner et al. [30] suggested that
such transitions could occur through the development of elliptical instabilities
and showed that states with smaller amount of large-scale rolls built on top of
each other transport heat more efficiently than states with more complex roll-
structure. Vasiliev et al. [31] discovered for the first time spontaneous forma-
tion of large-scale azimuthal flow. Here, we analyse the system driven thermally
by a random heat source and in that way we avoid the problem of boundary
conditions and thus the effect of boundary layers; we do not study the LSC
structure, but simply study the physical mechanism of LSC formation, i.e. de-
rive a formula for the effective ‘motive force’ driving LSC, which is shown to
take the form of negative vertical diffusion. This exact form is valid only as
long as the regime of weak and ‘intermediate’ turbulence persists, that is at the
initial and intermediate stages of evolution and turbulence development, but
once the turbulence becomes strong the structure of the ‘motive’ force is ex-
pected to change. This is a fundamental study and the result sheds light on the
physics of the process of energy transfer to large scales in thermal convection.
The introduced simplification can be viewed as an advantage in the sense, that
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the problem of inverse turbulent energy cascade in convection is extracted and
studied in isolation from the influence of velocity boundary conditions.

2. Dynamical equations and mathematical formulation

To study the thermally driven turbulence in an incompressible fluid we con-
sider a fluid layer between two flat, parallel boundaries distant L apart, with
gravity g = −gêz pointing downwards and volume heat sources delivering heat
to the system at a rate Q(x, t). Such a system is governed by the following dy-
namical equations describing the evolution of the velocity field of the fluid flow
u(x, t) and the temperature field T (x, t) under the Boussinesq approximation
(cf. [32, 33]):

∂u

∂t
+ (u · ∇)u = −∇Π + gᾱT êz + ν∇2u,(2.1a)

∂T

∂t
+ u · ∇T = κ∇2T +Q,(2.1b)

∇ · u = 0,(2.1c)

where Π = p/ρ̄ is the pressure divided by the mean density ρ̄, κ = k/ρ̄c̄p = const,
is the thermal diffusivity of the fluid, uniform by the assumption (k is the fluid’s
thermal conductivity) and T̄ is the mean temperature of the system which within
the Boussinesq approximation is much greater than any temperature variations;
c̄p, ᾱ are the mean values of the specific heat at constant pressure and the co-
efficient of thermal expansion, respectively. The kinematic viscosity of the fluid
is denoted by ν and Q = Q/ρ̄c̄p is the heat source in K/s. The solenoidal con-
straint for the velocity field (2.1c) simply expresses the law of mass conservation.
As typically done in the case of Boussinesq convection we have also assumed,
that the adiabatic temperature gradient gᾱT̄ /c̄p � ‖∇T‖ is much smaller than
the typical temperature gradients in the fluid flow (typically about a thousand
times smaller in laboratory flows, cf. e.g. [33]).

We concentrate on fluids with low Prandtl numbers:

(2.2) Pr =
ν

κ
� 1,

such as e.g. liquid gallium and write down the equations in the following non-
dimensional form:

∂u

∂t
+ ε(u · ∇)u = −∇Π + T êz +∇2u,(2.3a)

Pr
∂T

∂t
+ Pe u · ∇T = ∇2T +Q,(2.3b)

∇ · u = 0,(2.3c)
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where the Reynolds number (Re =)ε and the Péclet number Pe are defined in a
standard form:

(2.4) ε =
UL

ν
, Pe = εPr =

UL

κ
,

and we have chosen L2/ν for the time scale, L for the spatial scale, νU/gᾱL2 for
the temperature scale, κνU/gᾱL4 for the heat source scale and finally pressure
was scaled with ρ̄νU/L. We seek for the form of the large-scale flow equations
in the limit of ‘intermediate turbulence’ (described in general terms in the intro-
duction and in detail below and in [18, 19]), through expansions in the Reynolds
number ε; since Pr � 1 it follows that the Péclet number must also be small,
Pe� 1. Hence the final set of equations describing convection at the low Prandtl
number takes the form:

∂u

∂t
+ ε(u · ∇)u = −∇Π + T êz +∇2u,(2.5a)

∇2T = −Q, ∇ · u = 0.(2.5b)

Furthermore, we introduce the Fourier transforms defined in the following way:

ui(x, t) =

Λ∫
0

d3k

∞∫
−∞

dω ûi(k, ω)ei(k·x−ωt),(2.6a)

T (x, t) =

Λ∫
0

d3k

∞∫
−∞

dω T̂ (k, ω)ei(k·x−ωt),(2.6b)

Π(x, t) =

Λ∫
0

d3k

∞∫
−∞

dωΠ̂(k, ω)ei(k·x−ωt),(2.6c)

Q(x, t) =

Λ∫
0

d3k

∞∫
−∞

dωQ̂(k, ω)ei(k·x−ωt),(2.6d)

where according to the standard renormalization approach we have introduced
the upper cut-off for the Fourier spectra Λ, which in natural systems appears
due to enhanced energy dissipation at very small scales of turbulence.

The aim of this analysis is to study the large-scale flows in turbulent convec-
tion at low Pr. In order to model developed turbulence we assume a stochastic
heat source, Gaussian with zero mean

(2.7) 〈Q〉 = 0,
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statistically homogeneous and stationary, fully defined by the following correla-
tion function

(2.8) 〈Q̂(k, ω)Q̂(k′, ω′)〉 = Ξ(k)δ(k + k′)δ(ω + ω′),

where the function Ξ(k) is specified later and angular brackets 〈·〉 denote the
ensemble mean. Note that so-induced turbulence will be anisotropic because of
action of vertical gravity (buoyancy force). We can calculate a positive definite
quantity

(2.9)
∫
k2dΩ̊k

∫
d4q′〈Q̂(k, ω)Q̂(k′, ω′)〉 = 4πk2Ξ(k) > 0,

where Ω̊k denotes a solid angle associated with the vector k, which implies
Ξ(k) > 0.

The approach is based on the renormalization group technique, which is an
iterative procedure of successive elimination of thin wave-number bands from
the Fourier spectrum of fluctuating fields. In this way the effect of thin bands
of modes with shortest wavelengths on the remaining modes is calculated at
each step of the procedure. The final aim of this approach is to obtain recursion
equations for coefficients describing the effective mean Reynolds stress 〈uu〉 as
a function of the wave number at each step of the procedure. The Reynolds
stresses are responsible for creation of the turbulent viscosity and what can be
called a ‘motive force’ for the large-scale flows. The recursion equations (provided
in (A.43)) are then solved for k → 0 in order to obtain the final forms of the large-
scale viscosity and the motive force which appears in the mean-field equations
and includes the effect of nonlinear evolution of turbulent fluctuations.

3. The iterative weakly nonlinear renormalization procedure

Introducing new shorter four-component vector notation

(3.1) q = (k, ω),

Λ∫
0

d3k

∞∫
−∞

dω(·) =

∫
d4q(·),

so that e.g.

(3.2) ui(x, t) =

∫
d4qûi(q)ei(k·x−ωt),

the equations take the form:

(−iω + k2)ûi(q)− T̂ (q)δi3 + ikiΠ̂ = −iεkjI
(u)
ij (q),(3.3a)

k2T̂ (q) = Q̂(q), k · û(q) = 0.(3.3b)
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In the above we have also defined the following convolution integral

(3.4) I(u)
ij =

∫
d4q′ûi(q− q′)ûj(q

′),

which possesses the symmetry property

(3.5) I(u)
ij = I(u)

ji .

It should be noted, at this stage, that the convolution integrals, which represent
the non-linear interactions between fluctuating turbulent fields, are not neglected
in the evolutional equations for fluctuations (3.3a, 3.3b), and their effect is in-
cluded within the scope of the ‘intermediate turbulence regime’, based on the
iterative renormalization procedure introduced in [10]. Thus we go beyond the
weak turbulence regime and quantitatively express the effect of this nonlinear-
ity on the dynamics of the large-scale flow. The main aim here is to study the
development of large scale structures in turbulent convection, i.e. the effect of
nonlinear evolution of the fluctuations is crucial. Of course full nonlinear solu-
tions are not achievable. We need the assumption of ε � 1 in order to make
analytic progress, however, the situation is somewhat rectified by the fact, that
under the specified assumptions, solving the final differential recursion relations
obtained via the renormalization method has the meaning of contraction of the
perturbational series in ε, thus it can be expected that the solutions may be valid
also beyond the asymptotic limit of ε � 1. However, contrary to the standard
renormalization approach at each step of the iterative procedure based on a step-
by-step elimination of thin wave number bands from the Fourier spectrum, only
the terms of the leading order in ε will be retained; in such a way the Taylor
series in ε will not be finally contracted as in the renormalization approaches,
but instead we will obtain a weakly nonlinear expressions on effective coefficients
appearing in the final ‘renormalized’ equation for the large-scale flow, i.e. up to
the first order in ε.

In order to eliminate pressure we apply the projection operator

(3.6) Pij(k) = δij −
kikj
k2

,

to both sides of the Navier–Stokes equation (3.3a):

γûi(q) =
Pi3
k2
Q̂(q)− 1

2
iεPimnI(u)

mn(q),(3.7a)

k · û(q) = 0,(3.7b)

where we have already introduced T̂ (q) = Q̂(q)/k2 from (3.3b) and:

Pimn(k) = kmPin(k) + knPim(k),(3.8)

γ = −iω + k2.(3.9)
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The smallness of the amplitude of turbulence ε� 1 allows for a proper mathemat-
ical formulation of the problem, since the velocity field is expressed at the leading
order by the driving Q̂ and the nonlinearity, which is of the order O(ε), can be
treated in the perturbational sense. The iterational procedure of renormalization
is then applicable. The final recursion differential relations for the coefficients
describing the Reynolds stresses can be solved analytically, thus in particular the
turbulent viscosity and the motive force for the large-scale flow can be determined.

We now start the iterative procedure of taking successive little bites off the
Fourier spectrum from the short-wavelength side in order to obtain the final
nonlinear effect of the fluctuations on the means. At the first step of the procedure
we introduce the parameter λ1, which satisfies

(3.10) δλ = Λ− λ1 � 1,

and divides the Fourier spectrum into two parts:

û>i (k, ω) = θ(k−λ1)ûi(k, ω) or û>i (k, ω) = ûi(k
>, ω), λ1 < |k>| < Λ,(3.11a)

û<i (k, ω) = θ(λ1−k)ûi(k, ω) or û<i (k, ω) = ûi(k
<, ω), |k<| < λ1,(3.11b)

and the same way for Q̂. The equation for the field û<i (k, ω) is obtained by
averaging (3.7a) over the first shell (λ1 < k < Λ)

(−iω + k2)û<i (q) =
Pi3
k2
Q̂<(q)− 1

2
iεPimnI(u

<)
mn (q)(3.12)

− 1

2
iεPimn(k)

∫
d4q′〈û>m(q′)û>n (q− q′)〉c.

To get the equation for û>i (k, ω) we utilize (3.7a) again

(3.13) û>i (q) =
Pi3
k2γ

Q̂>(q)− iε
Pimn
γ

J(u)
mn(q)− 1

2
iε
Pimn
γ

I(u
<)

mn (q) +Ri,

where 〈·〉c denotes conditional average over the first shell (λ1 < k < Λ) sta-
tistical subensemble, described at the beginning of the Appendix (cf. [34–36]);
furthermore, we have defined

(3.14) J(u)
mn(q) =

∫
d4q′û<m(q′)û>n (q− q′),

and the rest in (3.13) is given by

(3.15) R
(u)
i = −1

2
iε
Pimn
γ

I(u
>)

mn .

The rests is neglected on the basis of generating triple order statistical correla-
tions since they involve only terms second order in u> or because of the kept
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order of accuracy in the asymptotic limit ε � 1, which allows to neglect terms
of the order O(ε3); for details the reader is referred to the Appendix.

In what follows we provide a short description of the asymptotic iterative
procedure, described in detail in the Appendix. Firstly, we introduce (3.13)
into (3.12) and calculate the dynamical effect of short-wavelength components
û>i (k, ω) on the evolution of û<i (k, ω) (long wavelength modes). This results in
corrections to some of the terms in Eq. (3.12), but also generates terms with
a new structure. Therefore, a next step is necessary, involving calculation of the
effect of the next shell λ2 = λ1 − δλ < k < λ1 (new short-wavelength modes)
on the modes with k < λ1 − δλ (new long wavelength modes); this is continued
until invariance of the equations for long-wavelength modes is achieved, i.e. the
equations do not change from one iterational step to the next one. We can then
take the limit of infinitesimally narrow wave number bands δλ→ 0, which leads
to differential recursion relations for all the coupling constants introduced into
the equations for long wavelength modes by couplings of the short wavelength
ones. In the isothermal, fully isotropic case Yakhot and Orszag [10] calcu-
lated the correction from short wavelength modes in the Navier–Stokes equation
which was proportional to k2û<i δλ thus creating viscosity correction; the turbu-
lent viscosity was then obtained from an equation of the form dνturb/dλ = f(λ)
with an ‘initial’ condition νeff (λ = Λ) = ν. The case at hand is anisotropic be-
cause of the vertical gravity (buoyancy force); explicit calculation of two initial
steps of the renormalization procedure is enough to derive the final differen-
tial recursion relations with satisfactory accuracy. The details of the procedure
are provided in the Appendix, however, we note here that at each step of the
procedure the contributions from the velocity gradients are included up to the or-
der (k/k′)2, where k′ belongs to the thin wave number band considered at this
step. In other words, although the heat source (2.8) is homogeneous, the non-
homogeneity resulting from mean velocity gradients and the anisotropy due to
the effect of buoyancy are included in the renormalization procedure. In turn, the
resulting motive force is anisotropic and proportional to the velocity gradients.

4. Dynamics of the large-scale flow

The mean-field equations are derived in the Appendix A and take the follow-
ing form:

∂〈U〉
∂t

+ (〈U〉 · ∇)〈U〉(4.1a)

= −∇〈Π〉 − 9ς∇2〈U〉zêz + (ν + 6ς)∇2
h〈U〉+ (ν + 4ς)

∂2〈U〉
∂z2

,

∇ · 〈U〉 = 0,(4.1b)
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where the coefficient

(4.2) ς =
2π2

735

g2ᾱ2L3Q2

ν3κ2k7
`

,

includes the effect of the turbulent fluctuations on the means; in the above Q is
the magnitude of heat delivery rate (in K/s) and k` is the wave number based
on the length scale of most energetic turbulent eddies. The general differential
recursion relations for the turbulent coefficients are solved in the Appendix A,
see (A.43a–c). It is evident that the term −9ς∇2〈U〉zêz is the large-scale motive
force responsible for energy transfer from small scales to large scales, i.e. the
inverse energy cascade; it takes the form of negative diffusion in the vertical
direction, which drives the large-scale flow.

For the sake of a rough estimate we may take the Kolmogorov cut-off value
Λ ∼ (

√
gL/ν)3/4L−1/4, where the free-fall velocity

√
gL was used as the con-

vective velocity scale, which yields ς ∼ νG−13/4H2(k`/Λ)−7, with H =
g1/2ᾱL7/2Q/κν and G =

√
gL3/ν2. Since k`/Λ� 1, this coefficient is expected

to be much larger than the molecular viscosity, in particular when H exceeds
unity. It is, in fact a typical situation when the turbulent coefficients greatly
exceed the molecular ones.

The turbulent coefficient (4.2) can also be expressed in terms of the Rayleigh
number defined as Ra` = gᾱT`3/κν with T = Q`2/κ, which is a non-dimensional
measure of the driving force (the magnitude of the heat source) and is based on
the length scale of the most energetic eddies `. This yields

(4.3) ς ∼ ν Ra2
` Pr−2

(
L

`

)3

,

hence the turbulent coefficient ς scales with the ratio Ra` /Pr to the power
of two. This is a rather strong dependence, especially in the considered limit of
a low Prandtl number.

4.1. Linear regime

Linearization of (4.1a) and substitution of normal modes in the form:

〈U〉z = eσt cos(Kh · x) sin(Kzz)Ûz,(4.4a)

〈U〉h = eσt sin(Kh · x) cos(Kzz)Û,(4.4b)

K · Û = 0,(4.4c)

〈Π〉 = eσt cos(Kh · x) cos(Kzz)Π̂,(4.4d)

leads to

(4.5) σ〈U〉 = −iKΠ̂−∇〈Π〉+ 9ςK2〈U〉zêz− (ν+ 6ς)K2
h〈U〉− (ν+ 4ς)K2

z 〈U〉,
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which under action of the projection operator 1−KK/K2 where 1 is the unity
matrix transforms into

(4.6) σ〈U〉i = 9ςK2

(
δi3 −

KiKz

K2

)
〈U〉z − (ν + 6ς)K2

h〈U〉i − (ν + 4ς)K2
z 〈U〉i,

so that the pressure is eliminated. This yields for the growth rate of the mean
flow

(4.7) σ = (3ς − ν)K2
h − (ν + 4ς)K2

z .

It follows that in turbulent convection driven by strong stochastic heat sources
H � 1 the growth rate takes the approximate form

(4.8) σ ≈ 3ςK2
h − 4ςK2

z ,

and thus turbulence excites large-scale modes with horizontal wavelengths short-
er than vertical ones,

(4.9) σ > 0 ⇔ K2
z <

3

4
K2
h ⇔ Lh <

√
3

2
Lz ≈ 0.87Lz.

In other words in the studied problem the large scale flow is expected to form
vertically elongated rolls. The growth rate increases unboundedly with K2

h, but
since the Eq. (4.1a) describes the large-scale flow only, there is a natural upper
bound on the horizontal wave number of the large-scale modes and thus on the
growth rate. As argued in the Appendix B there also exists an additional term
on the r.h.s. of the mean flow Eq. (4.1a) of the form %∂2

z 〈U〉zêz, which is of
smaller (asymptotically negligible) magnitude than the other turbulent terms
proportional to the coefficient ς, i.e. % < ς. Thus the growth rate is modified
to σ = 3ςK2

h − 4ςK2
z − %

K2
zK

2
h

K2 , but the sign of the turbulent coefficient % re-
mains undetermined, hence it is not clear whether it acts as additional diffusion
(if % > 0) or additional motive force (if % < 0).

The normal modes in the form (4.4a) are individually also solutions of the
nonlinear Eq. (4.1a). Of course in the discussed problem, the energy is transferred
from the small scale fluctuations, where the flow is thermally driven, to the large-
scale modes and thus in the limit of small K the dynamics naturally involves
wave packets, rather than individual modes, which evolve nonlinearly. Still it
is possible for the most unstable modes to dominate the dynamics, in which
case the amplitude of convection grows unboundedly in time until the initial
assumption of a small Reynolds number ceases to be valid and saturation may
occur. In other words, the analysis of weakly nonlinear turbulence does not lead
to saturation of large-scale modes, which is possible only beyond the scope of
this approach, that is in fully developed, strong turbulence.
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5. Conclusions

The presented analysis was focused on derivation of the effective equation
describing the dynamics of the large-scale flow (circulation) in turbulent con-
vection driven by a random heat source at low Pr. The applied technique was
based on the renormalization approach of [10] and [34] (see also [11] for a review
of the method), which allowed to incorporate the effect of the nonlinear terms
in the dynamical equations for small-scale turbulent fluctuations, and calculate
the anisotropic turbulent viscosity and ‘motive force’ induced by the fluctuations
and experienced by the large-scale flows. The renormalized mean-flow equation
was derived and it was shown that the ‘motive force’ acts in the form of negative
vertical diffusion, ∂t〈U〉 = −9ς∇2〈U〉zêz + · · · , where the turbulent coefficient ς
is given in (4.2), leading to enhancement of the mean flow energy. The general
recursion differential equations for all the turbulent coefficients are provided in
(A.40) for any form of the random heat-source function Ξ(k). This motive force
transfers energy from the small-scale fluctuations into the large-scale flow, i.e.
drives formation of the large-scale cells. In other words the physics of the energy
transfer from small scales to large ones during the process of the development of
turbulent convection can be understood via formation of an effective, transient
negative diffusion. However, such a structure of the motive force, in the form
of negative, anisotropic diffusion is eventually destroyed when the amplitude of
turbulence grows and the regime of fully nonlinear strong turbulence is reached.
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Appendix A. Details of the iterative, weakly nonlinear
renormalization procedure

The details of the renormalization procedure applied in order to obtain the
mean field equations are given in here. First of all we clarify how the ensem-
ble averaging should be understood and explain the concept of a conditional
average over a statistical subensemble for short-wavelength modes. We adopt
the approach of McComb et al. [34] (cf. also [35, 36]). The essential idea of
this approach is the introduction of a subensemble of flow realizations including
near-chaotic statistical properties for the short-wavelength shell λ1 < k ≤ Λ, but
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remaining quasi-deterministic for k ≤ λ1. The subensemble average can be pre-
cisely defined and then, utilizing the assumption, that in the turbulent cascade
the energy transfer in the Fourier space is local (i.e. the assumption of ergodicity
of the system), the following crucial properties can be proved:

〈û<(q)〉c = û<(q), 〈û<(q)û<(q′)〉c ≈ û<(q)û<(q′),(A.1a)
〈û>(q′)〉c ≈ 〈û>(q′)〉 = 0, 〈û<(q)û>(q′)〉c ≈ û<(q)〈û>(q′)〉c ≈ 0,(A.1b)

〈û>(q)û>(q′)〉c ≈ 〈û>(q)û>(q′)〉.(A.1c)

For details see particularly section IV and the beginning of section V in [34].
We now substitute the expressions for short wavelength modes from (3.13)

into the conditional averages in the equations for long wavelength modes
in (3.12). Neglecting higher order correlations of the type 〈û>i û

>
j Q̂

>〉c etc. (which
eliminates the rests in (3.13)) and using 〈Q̂>〉c = 0 and 〈û<i 〉c = û<i one obtains

(A.2) 〈û>m(q′)û>n (q− q′)〉c

=
Pm3(k′)Pn3(k− k′)

k′2|k− k′|2γ(q′)γ(q− q′)
〈Q̂>(q′)Q̂>(q− q′)〉c

− iεPm3(k′)

k′2γ(q′)

Pnpq(k− k′)

γ(q− q′)
〈Q̂>(q′)J(u)

pq (q− q′)〉c

− iεPn3(k− k′)

|k− k′|2γ(q− q′)

Pmpq(k
′)

γ(q′)
〈Q̂>(q− q′)J(u)

pq (q′)〉c +O(ε2).

The first term in (A.2) is proportional to 〈Q̂>(q′)Q̂>(q−q′)〉c ∼ δ(k)δ(ω), hence
on taking the inverse Fourier transform of 1

2 iεPimn(k)
∫

d4q′〈û>m(q′)û>n (q−q′)〉c
in the Navier–Stokes equation to return to the real space, this term vanishes
and thus does not contribute to the dynamics of large-scale fields; it follows that
this term is disregarded. Substituting once again for û> from (3.13) into the
J(u)-terms in (A.2) and making use of the symmetry q′ 7→ q − q′ under the in-
tegral

∫
d4q′ one obtains

(A.3)
∫

d4q′〈û>m(q′)û>n (q−q′)〉c

= −iε

∫
d4q′

×
∫

d4q′′
û<p (q′′)Pm3(k′)Pnpq(k−k′)Pq3(k−k′−k′′)

k′2|k−k′−k′′|2γ(q′)γ(q−q′)γ(q−q′−q′′)
〈Q̂>(q′)Q̂>(q−q′−q′′)〉c

+(m↔ n)+O(ε2),

where (m↔ n) in (A.3) denotes a term of the same structure as the previous one
but with exchanged indices m and n. We can now substitute for the heat-source
correlations



422 K. A. Mizerski

(A.4) 〈Q̂(k, ω)Q̂(k′, ω′)〉 = Ξ(k)δ(k + k′)δ(ω + ω′),

cf. (2.8), into (A.3) and perform the q′′ integral which yields

(A.5)
∫

d4q′〈û>m(q′)û>n (q− q′)〉c

= −iεû<p (q)

∫
d4q′

Ξ(k′)Pm3(k′)Pnpq(k− k′)Pq3(k′)

k′4|γ(q′)|2γ(q− q′)
+ (m↔ n) +O(ε2).

The q′-integrals are taken over an intersection of the domains λ1 < k′ < Λ and
λ1 < |k− k′| < Λ, i.e.

(A.6) {k′ : λ1 < k′ < Λ, λ1 < |k− k′| < Λ}.

Following the approach of Yakhot and Orszag [10] and Smith and Wood-
ruff [11] we calculate the q′-integrals to lowest nontrivial order in the distant-
interaction limit

(A.7)
k

k′
→ 0,

ω

ω′
→ 0,

which stems from the assumption of local energy transfer in the Fourier spectrum
of a turbulent cascade. The integrals are then calculated by setting ω = 0 and
substitution k′ 7→ k′+k/2 hence by symmetrization of the integration domain; in
the case at hand, when the zeroth order term ∼ (k/k′)0 vanishes no corrections
of the order k (and higher) from the integration domain are then necessary, and
it simplifies to

(A.8) {k′ : λ1 < k′ < Λ}.

This way the total renormalized corrections from short-wavelength modes are
proportional to k2, which implies that the lowest non-trivial order in distant
interactions produces corrections to diffusivities.

Therefore the corrections from short-wavelength modes to the equations for
long wavelength fluctuations in (A.5) can be expressed as follows. Making the
aforementioned substitution k′ → k′+ 1

2k to symmetrize the domain of integra-
tion one obtains

(A.9)
∫

d4q′〈û>m(q′)û>n (q−q′)〉c

=−iεû<p (q)

Λ∫
λ1

dk′
∫

dΩ̊

∞∫
−∞

dω′
Ξ(|k′+ 1

2k|)Pm3(k′+ 1
2k)Pnpq(

1
2k−k′)Pq3(k′+ 1

2k)

(k′2+k′rkr)|γ(k′+ 1
2k, ω′)|2γ(k′− 1

2k,−ω′)

+(m↔ n)+O(ε2),

where Ω̊ denotes a solid angle.
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Next we use the symmetry property such that
∫∞
−∞ ω

′fs(ω
′) dω′ = 0 for any

function fs(ω′) symmetric about ω′ = 0 and the following expansions in k/k′ up
to the first order:

Pmp

(
k′ +

1

2
k

)
= Pmp(k

′) +
k′mk

′
pk
′
r

k′4
kr −

k′mkp + kmk
′
p

2k′2
+O(k2),(A.10a)

Pnqp

(
1

2
k− k′

)
= − Pnqp(k′) + 2

k′nk
′
pk
′
qk
′
r

k′4
kr(A.10b)

−
k′nk

′
qkp + k′nk

′
pkq + 2knk

′
pk
′
q

2k′2

+
1

2
kqPnp(k

′) +
1

2
kpPnq(k

′) +O(k2),

1∣∣γ(k′ + 1
2k, ω′

)∣∣2 =
1

ω′2 + k′4 + 2k′2k′tkt
(A.10c)

=
1

ω′2 + k′4
− 2k′2k′tkt

(ω′2 + k′4)2
+O(k2),

Ξ

(∣∣∣∣k′ + 1

2
k

∣∣∣∣) = Ξ

(
k′ +

1

2k′
k′ · k +O(k2)

)
(A.10d)

= Ξ(k′) +
1

2k′
k′tkt

∂Ξ

∂k′
+O(k2),

which yields

(A.11) Pimn

∫
d4q′〈û>m(q′)û>n (q− q′)〉c

= −2iεPimnû
<
p (q)

Λ∫
λ1

dk′

k′2

∫
dΩ̊

×
∞∫
−∞

dω′
[k′2Ξ(k′)− 2k′tkt(Ξ(k′)− 1

4k
′ ∂Ξ
∂k′ )]Dnpm(k′,k)

(ω′2 + k′4)2
+O(ε2),

with

(A.12) Dnpm(k′,k)

=

[
−k′pPn3(k′) + δnpkz −

k′pk
′
n

k′2
kz − δnp

k′zk
′
q

k′2
kq +

k′pk
′
z

k′2
kn

]
Pm3(k′).

Furthermore, by the use of:

Pimn(k)δmn = 0, kpû
<
p (q) = 0,(A.13a) ∫

dΩ̊km . . . knkk︸ ︷︷ ︸
N

= 0, for any odd N and all m, . . . , n, k,(A.13b)
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dΩ̊

kmkn
k2

=
4π

3
δmn,(A.13c) ∫

kjkn
k2

cos2 θdΩ̊ =
4π

15
(δjn + 2δj3δn3),(A.13d) ∫

dΩ̊
kmknkpkq

k4
=

4π

15
(δmnδpq + δmpδnq + δmqδnp),(A.13e) ∫

ktkpkmkn
k4

cos2 θdΩ̊ =
4π

105
(δtpδmn + δtmδpn + δtnδpm)(A.13f)

+
8π

105
(δtpδm3δn3 + δtmδp3δn3 + δtnδp3δm3 + δpmδt3δn3

+ δpnδt3δm3 + δmnδt3δp3),
∞∫
−∞

dω′

(ω′2 + k′4)2
=

π

2k′6
,(A.13g)

where θ is the polar angle in spherical coordinates (k, θ, φ) one obtains

(A.14) − 1

2
iεPimn

∫
d4q′〈û>m(q′)û>n (q− q′)〉c

= − ε2 2π2

105
Pimnû

<
p (q)

×
Λ∫

λ1

dk′

k′6

{[
4Ξ(k′)− k′ ∂Ξ

∂k′

]
δpnkm +

[
8Ξ(k′) + 5k′

∂Ξ

∂k′

]
δpnδm3kz

}

− ε2 2π2

105
Pimnû

<
p (q)

Λ∫
λ1

dk′

k′6

[
Ξ(k′) + 5k′

∂Ξ

∂k′

]
δp3δm3kn +O(ε3)

= − ε2 2π2

105

Λ∫
λ1

dk′

k′6

[
4Ξ(k′)− k′ ∂Ξ

∂k′

]
k2û<i (q)

− ε2 2π2

105

Λ∫
λ1

dk′

k′6

[
8Ξ(k′) + 5k′

∂Ξ

∂k′

]
k2
z û

<
i (q)

− ε2 2π2

105

Λ∫
λ1

dk′

k′6

[
Ξ(k′) + 5k′

∂Ξ

∂k′

]
Pi3k

2û<z (q) +O(ε3).

We now utilize the assumption of narrowness of the first spectral bite Λ− λ1 =
δλ � 1 and define the following coefficients which describe the average effect
of the short-wavelength fluctuations with wave numbers from the narrow band
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λ1 ≤ k ≤ Λ on the long-wavelength fluctuations corresponding to the band
0 < k < λ1 (cf. (A.14)):

ξ̆(λ1) = 1 + ε2
2π2

105

δλ

λ6
1

[
4Ξ(λ1)− λ1

∂Ξ

∂λ
(λ1)

]
,(A.15a)

ζ̆(λ1) = ε2
2π2

105

δλ

λ6
1

[
8Ξ(λ1) + 5λ1

∂Ξ

∂λ
(λ1)

]
,(A.15b)

χ̆(λ1) = ε2
2π2

105

δλ

λ6
1

[
Ξ(λ1) + 5λ1

∂Ξ

∂λ
(λ1)

]
.(A.15c)

With the use of those definitions we can write down the dynamical equation
(3.12) in the new form, with the effect of the short-wavelength modes u> ex-
pressed through the effective Reynolds stresses (anisotropic turbulent viscosity)

(A.16)
[
−iω + ξ̆(λ1)k2 + ζ̆(λ1)k2

z

]
û<i (q) + χ̆(λ1)Pi3k

2û<z (q)

=
Pi3
k2
Q̂<(q)− 1

2
iεPimnI(u

<)
mn (q).

In order to proceed to the second step of the procedure we introduce a short
notation

(A.17) γ̆ = −iω + ξ̆(λ1)k2 + ζ̆(λ1)k2
z ,

which yields

(A.18) û<i (q) +
χ̆(λ1)k2

γ̆
Pi3û

<
z (q) =

Pi3
k2γ̆

Q̂<(q)− 1

2
iε
Pimn
γ̆

I(u
<)

mn (q)
def
= r.h.s.i.

Since

(A.19) û<z (q) =
k

kz
· [êz × (êz × û<(q))],

we may take the cross-product of (A.18) with êz twice and then the dot-product
with k to obtain

(A.20) û<z (q) =
γ̆

(γ̆ + χ̆(λ1)k2
h)

k

kz
· [êz × (êz × r.h.s)] =

γ̆

γ̆ + χ̆(λ1)k2
h

r.h.s.z,

where k2
h = k2 − k2

z . This leads to

û<i (q) =
Pi3
k2γ̆

Q̂<(q)− 1

2
iε
Pimn
γ̆

I(u
<)

mn (q)(A.21)

− χ̆(λ1)k2Pi3
γ̆ + χ̆(λ1)k2

h

[
1− k2z

k2

k2γ̆
Q̂<(q)− 1

2
iε
P3mn

γ̆
I(u

<)
mn (q)

]
,
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and hence

(A.22) û<i (q) =
Pi3

k2Γ̆
Q̂<(q)− 1

2
iε
Pimn
γ̆

I(u
<)

mn (q) +
1

2
iε
χ̆(λ1)k2

Γ̆

Pi3P3mn

γ̆
I(u

<)
mn (q),

where we have defined

Γ̆
def
= γ̆ + χ̆(λ1)k2

h =− iω + [ξ̆(λ1) + χ̆(λ1)]k2
h + [ξ̆(λ1) + ζ̆(λ1)]k2

z(A.23)

=− iω + [ξ̆(λ1) + χ̆(λ1)]k2 + [ζ̆(λ1)− χ̆(λ1)]k2
z .

We now proceed to the next step of the iterative procedure which consists
of a step-by-step elimination of infinitesimally small wave-number bands from
the Fourier spectrum from the short-wavelength side. We introduce λ2, which
satisfies

(A.24) δλ = λ1 − λ2 � 1,

and, again, split the remaining fluctuational Fourier spectrum 0 ≤ k ≤ λ1 into
two parts by defining new variables (but keeping the same notation):

θ(k − λ2)û<i (k, ω) 7→ û>i (k, ω), for λ2 < k < λ1,(A.25)
θ(λ2 − k)û<i (k, ω) 7→ û<i (k, ω), for k < λ2,(A.26)

and thesame way for Q̂. The equations are also split, as in the first step (cf.
(3.12) and (3.13)), i.e. we have

(A.27)
[
−iω + ξ̆(λ1)k2 + ζ̆(λ1)k2

z

]
û<i (q) + χ̆(λ1)Pi3k

2û<z (q)

=
Pi3
k2
Q̂<(q)− 1

2
iεPimnI(u

<)
mn (q)− 1

2
iεPimn

∫
d4q′〈û>m(q′)û>n (q− q′)〉c,

for the new long-wavelength modes and for the new short-wavelength ones we
get

û>i (q) =
Pi3

k2Γ̆
Q̂>(q)− iε

Pimn
γ̆

J(u)
mn(q) + iε

χ̆(λ1)k2

Γ̆

Pi3P3mn

γ̆
J(u)
mn(q)(A.28)

− 1

2
iε
Pimn
γ̆

I(u
<)

mn (q) +
1

2
iε
χ̆(λ1)k2

Γ̆

Pi3P3mn

γ̆
I(u

<)
mn (q) +Ri,

where:

J(u)
mn(q) =

∫
d4q′′û<m(q′′)û>n (q− q′′),(A.29)

Ri = −1

2
iε

[
Pimn
γ̆
− χ̆(λ1)k2

Γ̆

Pi3P3mn

γ̆

]
I(u

>)
mn (q).(A.30)
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Of course now 〈·〉c denotes conditional average over the second shell (λ2 ≤ k
≤ λ1) statistical subensemble.

Repetition of the sub-steps undertaken in the first step of the iterative pro-
cedure, but with the modified expression for the short-wavelength modes û>i (q),
in general leads to a new expression for the mean Reynolds stress. However, it
becomes clear that at the leading order the Reynolds stress remains uninfluenced
by the corrections ξ̆−1, ζ̆ and χ̆, which are all of the order ε2, thus unaltered with
respect to the previous step of the procedure (recall that we neglect the terms of
the order O(ε2) in the fluctuational corrections 〈û>mû>n 〉c). To demonstrate this
explicitly we calculate

(A.31) 〈û>m(q′)û>n (q− q′)〉c

=
Pm3(k′)Pn3(k− k′)

k′2|k− k′|2Γ̆(q′)Γ̆(q− q′)
〈Q̂>(q′)Q̂>(q− q′)〉c

− iεPm3(k′)

k′2Γ̆(q′)

Pnpq(k− k′)

γ̆(q− q′)
〈Q̂>(q′)J(u)

pq (q− q′)〉c

− iεPm3(k′)

k′2Γ̆(q′)

χ̆|k− k′|2

Γ̆(q− q′)

Pn3(k− k′)P3pq(k− k′)

γ̆(q− q′)
〈Q̂>(q′)J(u)

pq (q− q′)〉c

− iεPn3(k− k′)

|k− k′|2Γ̆(q− q′)

Pmpq(k
′)

γ̆(q′)
〈Q̂>(q− q′)J(u)

pq (q′)〉c

− iεPn3(k− k′)

|k− k′|2Γ̆(q− q′)

χ̆k′2

Γ̆(q′)

Pm3(k′)P3pq(k
′)

γ̆(q′)
〈Q̂>(q− q′)J(u)

pq (q′)〉c +O(ε2).

The first term in (A.31) is proportional to 〈Q̂>(q′)Q̂>(q − q′)〉c ∼ δ(k)δ(ω),
hence it does not contribute to the large-scale dynamics and it is disregarded,
as in the first step. Substituting once again for û> from (A.28) into the J(u)-terms
in (A.31) and making use of the symmetry q′ 7→ q−q′ under the integral

∫
d4q′

one obtains

(A.32)
∫

d4q′〈û>m(q′)û>n (q−q′)〉c

= −iε

∫
d4q′

∫
d4q′′

û<p (q′′)Pm3(k′)Pnpq(k−k′)Pq3(k−k′−k′′)

k′2|k−k′−k′′|2Γ̆(q′)Γ̆(q−q′−q′′)γ̆(q−q′)
〈Q̂>2〉c

−iεχ̆

∫
d4q′

×
∫

d4q′′
û<p (q′′)|k−k′|2Pm3(k′)Pn3(k−k′)P3pq(k−k′)Pq3(k−k′−k′′)

k′2|k−k′−k′′|2Γ̆(q′)Γ̆(q−q′)Γ̆(q−q′−q′′)γ̆(q−q′)
〈Q̂>2〉c

+(m↔ n)+O(ε2),
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where (m↔ n) in (A.32) denotes terms of the same structure as the two previous
ones but with exchanged indices m and n and

(A.33) 〈Q̂>2〉c = 〈Q̂>(q′)Q̂>(q− q′ − q′′)〉c.

We can now substitute for the heat-source correlations

(A.34) 〈Q̂(k, ω)Q̂(k′, ω′)〉 = Ξ(k)δ(k + k′)δ(ω + ω′),

cf. (2.8), into (A.32) and perform the q′′ integral which yields

(A.35) − 1

2
iεPimn

∫
d4q′〈û>m(q′)û>n (q− q′)〉c

= − ε2Pimnû<p (q)

∫
d4q′

Ξ(k′)Pm3(k′)Pnpq(k− k′)Pq3(k′)

k′4|Γ̆(q′)|2γ̆(q− q′)

− ε2χ̆Pimnû<p (q)

∫
d4q′

Ξ(k′)|k− k′|2Pm3(k′)Pn3(k− k′)P3pq(k− k′)Pq3(k′)

k′4|Γ̆(q′)|2Γ̆(q− q′)γ̆(q− q′)

+O(ε3),

where:

γ̆ = −iω + ξ̆k2 + ζ̆k2
z = γ +O(ε2),(A.36a)

Γ̆ = −iω + (ξ̆ + χ̆)k2 + (ζ̆ − χ̆)k2
z = γ +O(ε2),(A.36b)

χ̆ = O(ε2).(A.36c)

Hence we can write at leading order

(A.37) − 1

2
iεPimn

∫
d4q′〈û>m(q′)û>n (q− q′)〉c

= −ε2Pimnû<p (q)

∫
d4q′

Ξ(k′)Pm3(k′)Pnpq(k− k′)Pq3(k′)

k′4|γ(q′)|2γ(q− q′)
+O(ε3),

which is exactly the same as in the first step (cf. (A.5)) and therefore the resulting
corrections must have the same form as in (A.16), (A.15). It follows that:

ξ̆(λ2) = ξ̆(λ1) + ε2
2π2

105

δλ

λ6
2

[
4Ξ(λ2)− λ2

∂Ξ

∂λ
(λ2)

]
,(A.38a)

ζ̆(λ2) = ζ̆(λ1) + ε2
2π2

105

δλ

λ6
2

[
8Ξ(λ2) + 5λ2

∂Ξ

∂λ
(λ2)

]
,(A.38b)

χ̆(λ2) = χ̆(λ1) + ε2
2π2

105

δλ

λ6
2

[
Ξ(λ2) + 5λ2

∂Ξ

∂λ
(λ2)

]
.(A.38c)



Anisotropic turbulent viscosity and large-scale motive force. . . 429

If we now return to the dimensional units (recall, that we had chosen L2/ν for
the time scale, L for the spatial scale and κνU/gᾱL4 for the heat source scale;
the latter implies κ2νU2/g2ᾱ2L3 for the scale of Ξ(k))

(A.39)
[
−iω + νξ̆(λ1)k2 + νζ̆(λ1)k2

z

]
û<i (q) + νχ̆(λ1)Pi3k

2û<z (q)

=
gᾱ

κ

Pi3
k2
Q̂<(q)− 1

2
iPimnI(u

<)
mn (q),

we obtain:

ξ̆(λ1)− ξ̆(λ2)

δλ
= −2π2

105

g2ᾱ2

ν3κ2

1

λ6
2

[
4Ξ(λ2)− λ2

∂Ξ

∂λ
(λ2)

]
,(A.40a)

ζ̆(λ1)− ζ̆(λ2)

δλ
= −2π2

105

g2ᾱ2

ν3κ2

1

λ6
2

[
8Ξ(λ2) + 5λ2

∂Ξ

∂λ
(λ2)

]
,(A.40b)

χ̆(λ1)− χ̆(λ2)

δλ
= −2π2

105

g2ᾱ2

ν3κ2

1

λ6
2

[
Ξ(λ2) + 5λ2

∂Ξ

∂λ
(λ2)

]
.(A.40c)

It is now clear, that in all the following steps of the iterative, asymptotic proce-
dure no terms with new structure can appear in the velocity equation and thus
we can now take the continuous limit δλ→ 0 of the obtained recursions. Let us
introduce the following simple form of the heat source correlation function (note
that in an isotropic case driven by a random forcing f , a scaling of the form
〈fifj〉 ∼ k2 was shown by Lifshitz and Pitaevskii [37] to describe systems
in thermal equilibrium thus to study non-equilibrium flows we consider forcing
with significantly smaller scaling exponent)

(A.41) Ξ(k) =
Q2L3

νk2
,

which ensures, that the spectral density of the heat source Q2

(A.42)
Λ∫

0

k2dk

∫
dΩ̊k

∫
d4q′〈Q̂(k, ω)Q̂(k′, ω′)〉 =

Λ∫
0

4πQ2L3

ν
dk,

is uniform and where Q is the magnitude of the heat delivery rate (in K/s); this
yields:

dξ̆

dλ
= −4π2

35

g2ᾱ2L3

ν4κ2

Q2

λ8
⇒ ξ̆(Λ)−ξ̆(λ) = −4π2

245

g2ᾱ2L3Q2

ν4κ2

(
1

λ7
− 1

Λ7

)
,(A.43a)

dζ̆

dλ
=

4π2

105

g2ᾱ2L3

ν4κ2

Q2

λ8
⇒ ζ̆(Λ)−ζ̆(λ) =

4π2

735

g2ᾱ2L3Q2

ν4κ2

(
1

λ7
− 1

Λ7

)
,(A.43b)

dχ̆

dλ
=

6π2

35

g2ᾱ2L3

ν4κ2

Q2

λ8
⇒ χ̆(Λ)−χ̆(λ) =

6π2

245

g2ᾱ2L3Q2

ν4κ2

(
1

λ7
− 1

Λ7

)
.(A.43c)
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The application of the “initial” conditions ξ̆(Λ) = 1, ζ̆(Λ) = 0, χ̆(Λ) = 0 and the
limit λ = k` = 2π/`� Λ leads to:

ξ̆(k`) = 1 +
4π2

245

g2ᾱ2L3Q2

ν4κ2k7
`

,(A.44a)

ζ̆(k`) = −4π2

735

g2ᾱ2L3Q2

ν4κ2k7
`

,(A.44b)

χ̆(k`) = −6π2

245

g2ᾱ2L3Q2

ν4κ2k7
`

,(A.44c)

where ` can be thought of as the length-scale of most energetic eddies in the
turbulent flow. Defining:

ς =
2π2

735

g2ᾱ2L3Q2

ν3κ2k7
`

,(A.45a)

ξ = νξ̆(k`) = ν + 6ς,(A.45b)

ζ = −νζ̆(k`) = 2ς,(A.45c)
χ = −νχ̆(k`) = 9ς,(A.45d)

the large-scale flow is governed by:

(A.46)
∂〈U〉
∂t

+ (〈U〉 · ∇)〈U〉

= −∇〈Π〉 − 9ς∇2〈U〉zêz + (ν + 6ς)∇2〈U〉 − 2ς
∂2〈U〉
∂z2

,

or
(A.47)

∂〈U〉
∂t

+ (〈U〉 · ∇)〈U〉

= −∇〈Π〉 − 9ς∇2〈U〉zêz + (ν + 6ς)∇2
h〈U〉+ (ν + 4ς)

∂2〈U〉
∂z2

.

Appendix B. Comments on full renormalization

Full renormalization of the anisotropic problem at hand is not possible, be-
cause the integrals in (A.35) without the simplification (A.36) coming from ne-
glection of higher order terms in ε cannot be evaluated analytically. Moreover,
as it is demonstrated below, the full integrals (A.35) (not approximated to the
leading order in ε) lead to introduction of yet another term in the equation of the
form ∼ Pi3k

2
z û

<
z , thus making the further steps even more complicated; it can

be demonstrated however, that further steps of the renormalization procedure
do not introduce terms of a new structure. Therefore, the most general form of
the mean flow equation is the following:

(B.1)
∂〈U〉
∂t

+ (〈U〉 · ∇)〈U〉

= −∇〈Π〉 − χ∇2〈U〉zêz + %
∂2〈U〉z
∂z2

êz + ξ∇2
h〈U〉+ ζ

∂2〈U〉
∂z2

,
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where based on our weakly nonlinear results we may suppose that ξ > 0, ζ > 0
and χ > 0, but the sign of the coefficient % remains undetermined. Within the
weakly nonlinear approach this coefficient is negligibly small % = O(ε4), however
in fully developed strong turbulence it might be of a comparable magnitude with
all the remaining coefficients.

We now demonstrate that indeed, the renormalization leads to the above
general form of the mean flow equation. To that end we need to return to the
second step of the procedure and consider the full integrals in (A.35). Making
the aforementioned substitution k′ → k′ + 1

2k to symmetrize the domain of
integration one obtains:

(B.2) − 1

2
iεPimn

∫
d4q′〈û>m(q′)û>n (q− q′)〉c

= − ε2Q
2L3

ν
Pimnû

<
p (q)

∫
dk′
∫

dΩ̊

×
∞∫
−∞

dω′
Pmq(k′ + 1

2k)Pnpq(
1
2k− k′)

(k′2 + k′rkr)
2
∣∣Γ̆(k′ + 1

2k, ω′)
∣∣2γ̆(k′ − 1

2k,−ω′)

− ε2Q
2L3

ν
χ̆Pimnû

<
p (q)

∫
dk′
∫

dΩ̊

×
∞∫
−∞

dω′
∣∣k′ − 1

2k
∣∣2Pmq(k′ + 1

2k)Pn3(k′ − 1
2k)P3pq(

1
2k− k′)

k′4
∣∣Γ̆(k′ + 1

2k, ω′)
∣∣2Γ̆(k′ − 1

2k,−ω′)γ̆(k′ − 1
2k,−ω′)

+O(ε3),

where:

(B.3) Pmq
(
k′ + 1

2k
)

= Pm3

(
k′ + 1

2k
)
Pq3
(
k′ + 1

2k
)
.

Expansion in k/k′ up to the first order leads to:

(B.4) − 1

2
iεPimn

∫
d4q′〈û>m(q′)û>n (q− q′)〉c

= − ε2Q
2L3

ν
Pimnû

<
p (q)

∫
dk′

k′8

∫
dΩ̊

×
∞∫
−∞

dω′
F(k′, ω′)Pmq(k′ + 1

2k)Pnpq(
1
2k− k′)∣∣Γ̆(k′ + 1

2k, ω′)
∣∣2∣∣γ̆(k′ − 1

2k, ω′)
∣∣2

− ε2Q
2L3

ν
χ̆Pimnû

<
p (q)

∫
dk′

k′8

∫
dΩ̊

×
∞∫
−∞

dω′
G(k′, ω′)Pmq(k′ + 1

2k)Pn3(k′ − 1
2k)P3pq(

1
2k− k′)∣∣Γ̆(k′, ω′)

∣∣4∣∣γ̆(k′ − 1
2k, ω′)

∣∣2 +O(ε3),
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with:

F(k′, ω′) ≈ [ξ̆k′2 − ζ̆k′2z − ξ̆k′rkr + ζ̆k′zkz](k
′2 − k′rkr)2(B.5)

≈ k′4[k′2(ξ̆ − ζ̆X2) + ζ̆k′zkz + (2ζ̆X2 − 3ξ̆)k′rkr],

G(k′, ω′) ≈ {−ω′2 + k′4(ξ̆ − ζ̆X2)[(ξ̆ − χ̆)− (ζ̆ − χ̆)X2](B.6)

− [2ξ̆(ξ̆ − χ̆)− (2ξ̆ζ̆ − χ̆(ξ̆ + ζ̆))X2]k′2k′rkr

+ [2ξ̆ζ̆ − χ̆(ξ̆ + ζ̆)− 2ζ̆(ζ̆ − χ̆)X2]k′2k′zkz}(k′2 − k′rkr)3

≈ − ω′2k′6 + k′10(ξ̆ − ζ̆X2)[(ξ̆ − χ̆)− (ζ̆ − χ̆)X2]

+ {3ω′2 − [5ξ̆(ξ̆ − χ̆)− 4(2ξ̆ζ̆ − χ̆(ξ̆ + ζ̆))X2

+ 3ζ̆(ζ̆ − χ̆)X4]k′4}k′4k′rkr
+ [2ξ̆ζ̆ − χ̆(ξ̆ + ζ̆)− 2ζ̆(ζ̆ − χ̆)X2]k′8k′zkz,

(B.7)
1

|γ̆(k′ − 1
2k, ω′)|2

1

|Γ̆(k′ + 1
2k, ω′)|2

≈ 1

[ω′2 + k′4(ξ̆ − ζ̆X2)2][ω′2 + k′4((ξ̆ − χ̆)− (ζ̆ − χ̆)X2)2]

+ 2χ̆k′2
ω′2{[ξ̆(2−X2)− ζ̆X2 − χ̆(1−X2)]k′rkr + [ζ̆(2X2 − 1)− ξ̆ + χ̆(1−X2)]k′zkz}

[ω′2 + k′4((ξ̆ − χ̆)− (ζ̆ − χ̆)X2)2]2[ω′2 + k′4(ξ̆ − ζ̆X2)2]2

+ 2χ̆k′2
k′4(ξ̆ − ζ̆)(ξ̆ − ζ̆X2)((ξ̆ − χ̆)− (ζ̆ − χ̆)X2)(X2k′rkr − k′zkz)
[ω′2 + k′4((ξ̆ − χ̆)− (ζ̆ − χ̆)X2)2]2[ω′2 + k′4(ξ̆ − ζ̆X2)2]2

,

and under integration over the azimuthal angle
∫ 2π

0 dϕ different terms in the
integrands transform into:

(B.8) Pimnû
<
p (q)f(X2)Pm3

(
k′ +

1

2
k

)
Pnpq

(
1

2
k− k′

)
Pq3

(
k′ +

1

2
k

)
→ Pimnû

<
p (q)f(X2)

[
−δnp

k′zk
′
q

k′2
kq + δnpkz −

k′pk
′
n

k′2
kz +

k′pk
′
z

k′2
kn

]
Pm3(k′)

→ πf(X2)(1−X2)2k2
z û

<
i (q) + 3πf(X2)X2(1−X2)k2Pi3û

<
z (q)

+ πf(X2)

[
35

2
X4 − 21X2 + 2

]
k2
zPi3û

<
z (q),

(B.9)

Pimnû
<
p (q)f(X2)Pm3

(
k′ +

1

2
k

)
Pn3

(
k′ − 1

2
k

)
P3pq

(
1

2
k− k′

)
Pq3

(
k′ +

1

2
k

)
→ Pimnû

<
p (q)f(X2)

[
Pm3(k′)Pn3(k′)Pp3(k′)kz − Pm3(k′)Pn3(k′)Pp3(k′)

k′zk
′
q

k′2
kq

]
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→ π

2
f(X2)X4(1−X2)2k2û<i (q)

+
π

2
f(X2)X2(4− 17X2 + 18X4 − 5X6)k2

z û
<
i (q)

+
π

2
f(X2)X2(4− 9X2 + 10X4 − 5X6)Pi3k

2û<z (q)

+
π

2
f(X2)(8− 56X2 + 123X4 − 110X6 + 35X8)Pi3k

2
z û

<
z (q),

(B.10) Pimnû
<
p (q)f(X2)k′pPn3(k′)Pm3(k′)k′zkz

→ Pimnkzû
<
p (q)k′2f(X2)(δm3δn3

k′zk
′
p

k′2
− 2X2δm3

k′nk
′
p

k′2
+X2

k′mk
′
nk
′
pk
′
z

k′4
)

→ 2πk′2f(X2)X2(5X4−9X2+4)Pi3k
2
z û

<
z (q)−2πk′2f(X2)X2(1−X2)2k2

z û
<
i (q),

(B.11) Pimnû
<
p (q)f(X2)k′pPn3(k′)Pm3(k′)k′rkr

→ krPimnû
<
p (q)k′2f(X2)(δn3δm3

k′pk
′
r

k′2
− 2δm3

k′pk
′
rk
′
nk
′
z

k′4
+X2

k′pk
′
rk
′
mk
′
n

k′4
)

→ π

2
k′2f(X2)X2(1−X2)2k2û<i (q)− 5

2
πk′2f(X2)X2(1−X2)2Pi3k

2û<z (q)

− 5

2
πk′2f(X2)X2(1−X2)2k2

z û
<
i (q)

− π

2
k′2f(X2)(1−X2)(35X4 − 35X2 + 4)Pi3k

2
z û

<
z (q).

It is clear from the latter formulae that a new term of the form Pi3k
2
z û

<
z (q)

appears in the equation for the long-wavelength modes in the second step (A.27)
and hence we need to perform one more step, until invariance of the equations
for long-wavelength modes is achieved at each step and the procedure can be
closed and reduced to the form of recursion differential equations. Hence we
introduce λ3, which satisfies

(B.12) δλ = λ2 − λ3 � 1,

and once again split the remaining fluctuational Fourier spectrum 0 ≤ k ≤ λ2

into two parts by defining new variables (but keeping the same notation):

θ(k − λ3)û<i (k, ω) 7→ û>i (k, ω), for λ3 < k < λ2,(B.13)
θ(λ3 − k)û<i (k, ω) 7→ û<i (k, ω), for k < λ3,(B.14)

and the same way for Q̂. The equations are also split, as in the first and second
steps (cf. (3.12) and (3.13)), i.e. for the new long-wavelength modes we have

(B.15) [−iω+ ξ̆(λ2)k2 + ζ̆(λ2)k2
z ]û

<
i (q)+χ̆(λ2)Pi3k

2û<z (q)+ %̆(λ2)Pi3k
2
z û

<
z (q)

=
Pi3
k2
Q̂<(q)− 1

2
iεPimnI(u

<)
mn (q)− 1

2
iεPimn

∫
d4q′〈û>m(q′)û>n (q−q′)〉c.
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Of course now 〈·〉c denotes conditional average over the second shell (λ3 ≤ k
≤ λ2) statistical subensemble but the coefficients ξ̆(λ2), ζ̆(λ2), χ̆(λ2) and %̆(λ2)
are now strongly nonlinear functions of ξ̆(λ1), ζ̆(λ1), χ̆(λ1). A third step is now
necessary, in order to verify that in the following steps of the recursion procedure
the new term %̆(λ2)Pi3k

2
z û

<
z (q) does not lead to appearance of yet other terms

with a distinct structure. This however, is obvious since the new term can be
treated as a correction to the χ̆(λ2)-term, thus for the new short-wavelength
modes we get (cf. (A.28))

û>i (q) =
Pi3

k2Γ̆
Q̂>(q)− iε

Pimn
γ̆

J(u)
mn(q)(B.16)

+ iε
(χ̆(λ1)k2 + %̆(λ2)k2

z)

Γ̆

Pi3P3mn

γ̆
J(u)
mn(q)− 1

2
iε
Pimn
γ̆

I(u
<)

mn (q)

+
1

2
iε

(χ̆(λ1)k2 + %̆(λ2)k2
z)

Γ̆

Pi3P3mn

γ̆
I(u

<)
mn (q) +Ri,

where

J(u)
mn(q) =

∫
d4q′′û<m(q′′)û>n (q− q′′),(B.17)

Ri = −1

2
iε

[
Pimn
γ̆
− (χ̆(λ1)k2 + %̆(λ2)k2

z)

Γ̆

Pi3P3mn

γ̆

]
I(u

>)
mn (q).(B.18)

It follows that although the new coefficient %̆(λ2) influences the dependencies
of ξ̆(λ3), ζ̆(λ3), χ̆(λ3), %̆(λ3) on ξ̆(λ2), ζ̆(λ2), χ̆(λ2) and %̆(λ2) and makes them
even more complex, no terms with new structure appear in the following steps of
the procedure. This allows to close the recursion problem which results in some
strongly nonlinear equations for the four coefficients ξ̆(λ), ζ̆(λ), χ̆(λ) and %̆(λ)
and hence the large-scale equations take the general form (B.1).

As a final note, it is to be stressed once again that the entire technique
fundamentally relies on two important assumptions, regarding the properties
of the flow. Firstly, we recall that the statistical correlations between short-
wavelength fluctuations of the order higher than second, i.e. terms of the type
〈û>i û

>
j Q̂

>〉c have been neglected. Secondly, the limit of distant interactions (A.7)
corresponding to an assumption of ergodicity of the system has greatly simplified
the calculations.
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