PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Negative Shrinkage of Thin-walled Investment Brass Castings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dhokra or Dokra casting is a sophisticated cast metal craft tradition of the Indian subcontinent. It has been practiced by the countryfolk now since the Copper Age. It is a lost wax casting process in the hot clay mold. The technology is such sophisticated that it can produce up to 400 μm thin-walled hollow cast products with complicated and intricate shapes using Brass, Bronze, Copper, and other copper alloys. The investigation was for engraving Brass (2% lead) which is used by Dhokra artisans nowadays. In a field visit during dimensional analysis, one discrepancy was identified. The metal thicknesses of hollow castings are thicker than the thickness of the wax pattern. This cast metal dilation phenomenon is unusual. Shrinkage of metals compared to the pattern dimension is familiar in the casting world. The same abnormalities in the repeated investigation at different sites were observed. All the studies and experiments were organized to explain the reason hidden behind the phenomenon.
Rocznik
Strony
17--24
Opis fizyczny
Bibliogr. 29 poz., il., rys., tab., wykr.
Twórcy
  • Dept. of Metallurgical and Material Engineering, Jadavpur University, Kolkata, India
  • Dept. of Metallurgical and Material Engineering, Jadavpur University, Kolkata, India
autor
  • Dept. of Metallurgical and Material Engineering, Jadavpur University, Kolkata, India
Bibliografia
  • [1] Mandal, B. & Datta P.K. (2010). Hot mold casting process of ancient east India and Bangladesh. China Foundry. 7(2), 171- 177.
  • [2] Mukherjee, D. (2016). A comparative study of dokra metal craft technology and harappan metal craft technology. Heritage: Journal of Multidisciplinary Studies in Archaeology. 4, 757-768.
  • [3] Roy, S., Pramanick, A.K. & Datta, P.K. (2020). Precise filling time calculation of thin-walled investment casting in hot mold. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 42(10), 1-11. https://doi.org/10.1007/s40430- 020-02634-6.
  • [4] Dong, Y.W., Li, X.L., Zhao, Q., Yang, J. & Dao, M. (2017). Modelling of shrinkage during investment casting of thin-walled hollow turbine blades. Journal of Materials Processing Technology. 244, 190-203. https://doi.org/10.1016/ j.jmatprotec.2017.01.005.
  • [5] Cannell, N., Sabau, A.S. (2005). Predicting pattern tooling and casting, dimensions for investment casting, phase II. Final Technical Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
  • [6] Kroma, A. & Brzęk, P. (2021). Influence of mould material on the mechanical properties of wax models. Archive of Foundry Engineering. 21(3), 48-52. DOI: 10.24425/afe.2021.138664.
  • [7] Stefanescu, D. S. (2002). Science and engineering of casting solidification. New York: Springer Scienee.
  • [8] Garbacz-Klempka, A., Suchy, J.S., Kwak, Z., Tokarski, T., Klempka, R. & Stolarczyk, T. (2018). Study of investment casting technology from bronze age. Casting workshop in grzybiany (Southwest Poland). Archives of Metallurgy and Materials. 63(2), 615-624. DOI: 10.24425/122385.
  • [9] Roy, S., Pramanick, A.K. & Datta, P.K. (2017). Kinetics of liquid metal flow in gating design of investment casting production. Slévárenství. 5-6, 149-154.
  • [10] Raza, M. (2015). Experimental study of the filling of thin-walled investment castings In 17-4ph stainless steel. Metall Foundry Engineering. 41(2), 85-98. DOI: https://doi.org/10.7494/mafe.2015.41.2.85.
  • [11] Chang, S. & Stefanescu, D.M. (1996). A model formacrosegregation and its application to Al-Cu castings. Metallurgical and Materials Transaction A. 27(9), 2708-2721.
  • [12] Roy, S., Pramanick, A.K., Datta P.K. (2021). Quality analysis of tribal casting products by topsis for different gating system. In IOP Conference Series: Materials Science and Engineering, February, 2021 (p. 012014). IOP Publishing. DOI:10.1088/1757-899X/1080/1/012014.
  • [13] Stefanescu, D.M.(1998). Casting. ASM handbook Volume: 15. 409-413. ASM International.
  • [14] Roy, S., Kr Pramanick, A., Kr Datta P. (2022). The effect of gating system on quality of traditional rural metal castings of india. Rrecent trends in industrial and production engineering. Lecture notes in mechanical engineering. (pp. 267-278). Singapore: Springer. https://doi.org/10.1007/978-981-16-3135-1_27.
  • [15] Austral Wright Metals-Ferrous, Non-Ferrous and High Performance Alloys (2008, August). Metal alloys-properties and applications of brass and brass alloys. Retrieved May, 30 2022, from https://www.azom.com/article.aspx?Article ID=4387
  • [16] Extra High Leaded Brass UNS C35600. Retrieved May, 30 2022, from https://www.azom.com/article.aspx?ArticleID =6389
  • [17] Mandal, B. & Datta, P. K. (2010). Understanding alloy design principles and cast metal technology in hot molds for medieval Bengal. Indian Journal of History of Science. 45(1), 101-140.
  • [18] Rao, P.N. (2019). Manufacturing technology. Vol.- I, (5th ed.) India: McGraw Hill Education.
  • [19] Horáček, M. (2005). Accuracy of investment casting. Archives of Foundry. 5(15). 121-137.
  • [20] Indian Minerals Yearbook 2015 (Part- III : Mineral Reviews), (2017, February) Retrieved May 28, 2022, from https://ibm.gov.in/writereaddata/files/02282017165033IMYB2015_Kaolin_28022015_Adv.pdf.
  • [21] Thampi, C.J. (2013). Soils Of Bankura District (West Bengal) For Land Use Planning. National Bureau of Soil Survey & Land Use Planning, India.
  • [22] RSP Green Development And Laboratories PVT. LTD, (July 2018) District Survey Report of Bankura District. India.
  • [23] Chakraborty A. K. (2014). Phase transformation of kaolinite clay. (1st ed.), New York, New Delhi: Springer. DOI 10.1007/978-81-322-1154-9.
  • [24] Hyslop, A. McMurdo, (1938). The thermal expansion of some clay mineral. Transactions and journal of the British Ceramic Society. 37, 180-186.
  • [25] Heindl, R.A. & Meng, L.E. (1939). Length changes and endothermic and exothermic effects during heating of flint and aluminous clays. Journal of Research of the National Bureau of Standards. 23(9), 427-441.
  • [26] Thiel. J. (2011). Thermal expansion of chemically bonded silica sands. AFS Transations - American Foundry Society. 11-116, 1-10.
  • [27] ISO 1: 2016: Geometrical product specifications (GPS) - standard reference temperature for the specification of geometrical and dimensional properties. https://www.iso.org/standard/67630.html.
  • [28] Anggono, J. (2005). Mullite ceramics: its properties, structure, and synthesis. Jurnal Teknik Mesin. 7(1), 1-10.
  • [29] Cannell, N., Sabau, A.S. (2007). Predicting pattern tooling and casting, dimensions for investment casting, phase III. Final Technical Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3286f00-8eca-45b0-becc-814114f6043b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.