PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Learning edge importance in bipartite graph-based recommendations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
In this work, we propose the P3 Learning to Rank (P3LTR) model, a generalization of the RP3Beta graph-based recommendation method. In our approach, we learn the importance of user-item relations based on features that are usually available in online recommendations (such as types of user-item past interactions and timestamps). We keep the simplicity and explainability of RP3Beta predictions. We report the improvements of P3LTR over RP3Beta on the OLX Jobs Interactions dataset, which we published.
Rocznik
Tom
Strony
227--233
Opis fizyczny
Bibliogr. 39 poz., wz., tab., il.
Twórcy
  • Faculty of Mathematics and Computer Science Adam Mickiewicz University Uniwersytetu Poznańskiego 4 61-614 Poznań, Poland
  • OLX Group ul. Królowej Jadwigi 43, 61-872 Poznań, Poland
  • Faculty of Mathematics and Computer Science Adam Mickiewicz University Uniwersytetu Poznańskiego 4 61-614 Poznań, Poland
  • Poznań University of Economics and Business Al. Niepodległości 10, 61-875 Poznań, Poland
  • OLX Group ul. Królowej Jadwigi 43, 61-872 Poznań, Poland
Bibliografia
  • 1. B. Paudel, F. Christoffel, C. Newell, and A. Bernstein, “Updatable, accurate, diverse, and scalable recommendations for interactive applications,” ACM Transactions on Interactive Intelligent Systems, vol. 7, pp. 1–34, 12 2016.
  • 2. M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are we really making much progress? a worrying analysis of recent neural recommendation approaches,” in Proceedings of the 13th ACM Conference on Recommender Systems, ser. RecSys ’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 101–109.
  • 3. M. F. Dacrema, S. Boglio, P. Cremonesi, and D. Jannach, “A troubling analysis of reproducibility and progress in recommender systems research,” ACM Transactions on Information Systems, vol. 39, pp. 1–49, 01 2021.
  • 4. V. W. Anelli, A. Bellogín, T. Di Noia, and C. Pomo, “Reenvisioning the comparison between neural collaborative filtering and matrix factorization,” in Fifteenth ACM Conference on Recommender Systems, ser. RecSys ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 521–529.
  • 5. C. Gómez-Uribe and N. Hunt, “The netflix recommender system,” ACM Transactions on Management Information Systems, vol. 6, pp. 1–19, 12 2015.
  • 6. B. Smith and G. Linden, “Two decades of recommender systems at amazon.com,” IEEE Internet Computing, vol. 21, pp. 12–18, 05 2017.
  • 7. M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” in The Adaptive Web. Springer, 2007.
  • 8. U. Javed, K. Shaukat Dar, I. Hameed, F. Iqbal, T. Mahboob Alam, and S. Luo, “A review of content-based and context-based recommendation systems,” International Journal of Emerging Technologies in Learning (iJET), vol. 16, 02 2021.
  • 9. R. Chen, Q. Hua, Y.-S. Chang, B. Wang, L. Zhang, and X. Kong, “A survey of collaborative filtering-based recommender systems: From traditional methods to hybrid methods based on social networks,” IEEE Access, vol. PP, pp. 1–1, 10 2018.
  • 10. X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative filtering,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, ser. SIGIR’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 165–174. [Online]. Available: https://doi.org/10.1145/3331184.3331267
  • 11. X. Ning and G. Karypis, “Slim: Sparse linear methods for top-n recommender systems,” in Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ser. ICDM ’11. USA: IEEE Computer Society, 2011, p. 497–506. [Online]. Available: https://doi.org/10.1109/ICDM.2011.134
  • 12. H. Khojamli and J. Razmara, “Survey of similarity functions on neighborhood-based collaborative filtering,” Expert Systems with Applications, vol. 185, p. 115482, 2021.
  • 13. M. Kula, “Metadata embeddings for user and item cold-start recommendations,” arXiv preprint https://arxiv.org/abs/1507.08439, 2015.
  • 14. Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback datasets,” in Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ser. ICDM ’08. USA: IEEE Computer Society, 2008, p. 263–272.
  • 15. X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. New York, NY, USA: Association for Computing Machinery, 2020, p. 639–648. [Online]. Available: https://doi.org/10.1145/3397271.3401063
  • 16. M. Grbovic, V. Radosavljevic, N. Djuric, N. Bhamidipati, J. Savla, V. Bhagwan, and D. Sharp, “E-commerce in your inbox: Product recommendations at scale,” in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’15. New York, NY, USA: Association for Computing Machinery, 2015, p. 1809–1818.
  • 17. O. Barkan and N. Koenigstein, “Item2vec: Neural item embedding for collaborative filtering,” 09 2016, pp. 1–6.
  • 18. G. Adomavicius and A. Tuzhilin, Context-Aware Recommender Systems. Boston, MA: Springer US, 2015, pp. 191–226. [Online]. Available: https://doi.org/10.1007/978-1-4899-7637-6_6
  • 19. S. Kulkarni and S. F. Rodd, “Context aware recommendation systems: A review of the state of the art techniques,” Computer Science Review, vol. 37, p. 100255, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1574013719301406
  • 20. M. Quadrana, P. Cremonesi, and D. Jannach, “Sequence-aware recommender systems,” ACM Comput. Surv., vol. 51, no. 4, jul 2018. [Online]. Available: https://doi.org/10.1145/3190616
  • 21. A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” vol. 2016, 07 2016, pp. 855–864.
  • 22. B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 03 2014.
  • 23. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” in Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, ser. NIPS’13. Red Hook, NY, USA: Curran Associates Inc., 2013, p. 3111–3119.
  • 24. X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative filtering,” ser. SIGIR’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 165–174. [Online]. Available: https://doi.org/10.1145/3331184.3331267
  • 25. R. van den Berg, T. Kipf, and M. Welling, “Graph convolutional matrix completion,” ArXiv, vol. abs/1706.02263, 2017.
  • 26. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph convolutional neural networks for web-scale recommender systems,” in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 974–983. [Online]. Available: https://doi.org/10.1145/3219819.3219890
  • 27. C. Cooper, S. H. Lee, T. Radzik, and Y. Siantos, “Random walks in recommender systems: Exact computation and simulations,” in Proceedings of the 23rd International Conference on World Wide Web, ser. WWW ’14 Companion. New York, NY, USA: Association for Computing Machinery, 2014, p. 811–816.
  • 28. F. Fouss, A. Pirotte, and M. Saerens, “A novel way of computing similarities between nodes of a graph, with application to collaborative recommendation,” in The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), 2005, pp. 550–556.
  • 29. F. Fouss, A. Pirotte, J.-m. Renders, and M. Saerens, “Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 3, pp. 355–369, 2007.
  • 30. M. Gori and A. Pucci, “Itemrank: A random-walk based scoring algorithm for recommender engines.” 01 2007, pp. 2766–2771.
  • 31. X. Geng, H. Zhang, J. Bian, and T.-S. Chua, “Learning image and user features for recommendation in social networks,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 4274–4282.
  • 32. C. Wang and D. Blei, “Collaborative topic modeling for recommending scientific articles,” 08 2011, pp. 448–456.
  • 33. F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, dec 2015. [Online]. Available: https://doi.org/10.1145/2827872
  • 34. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian personalized ranking from implicit feedback,” Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009, 05 2012.
  • 35. J. Weston, S. Bengio, and N. Usunier, “Wsabie: Scaling up to large vocabulary image annotation,” 01 2011, pp. 2764–2770.
  • 36. Y.-M. Tamm, R. Damdinov, and A. Vasilev, “Quality metrics in recommender systems: Do we calculate metrics consistently?” in Fifteenth ACM Conference on Recommender Systems, ser. RecSys ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 708–713. [Online]. Available: https://doi.org/10.1145/3460231.3478848
  • 37. J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.
  • 38. G. Shani and A. Gunawardana, Evaluating Recommendation Systems. Boston, MA: Springer US, 2011, pp. 257–297. [Online]. Available: https://doi.org/10.1007/978-0-387-85820-3_8
  • 39. M. Vijaymeena and K. Kavitha, “A survey on similarity measures in text mining,” Machine Learning and Applications: An International Journal, vol. 3, pp. 19–28, 03 2016.
Uwagi
1. Track 4: 1st Workshop on Personalization and Recommender Systems
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a31f2a25-afd3-4afc-a033-a4a7de34c7be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.