PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Refining consonance sensation through spectral component control in additive resynthesis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A previous study explored the potential to influence the perception of consonance by controlling the spectral components of simultaneous pitches within a chord in sound synthesis using the additive method. This approach involves considering spectral components across in all simultaneously sounding pitches constituting a chord. Components within the range of beatings and roughness are adjusted to gradually enhance or weaken both phenomena. So far, the idea and method were implemented in a basic additive synthesizer, producing simple, abstract, time-invariant timbres. The current study extends this research and addresses challenges associated with implementing the aforementioned consonance-altering mechanism in a more advanced additive synthesizer, applied to the task of resynthesizing the sound of selected acoustic instruments. This study deals with natural, independent evolution of spectral components, wherein consonance undergoes gradual variations over time. Additionally, it presents a solution to mitigate the impact of the mechanism on the overall signal level, arising from the attenuation of selected spectral components.
Rocznik
Strony
art. no. 2024103
Opis fizyczny
Bibliogr. 21 poz., il. kolor., rys., wykr.
Twórcy
autor
  • AGH University of Krakow, Department of Mechanics and Vibroacoustics, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • 1. M. Pluta; Sound synthesis for music reproduction and performance; Wydawnictwa AGH, Krakow, Poland, 2019
  • 2. M. Pluta; Influence on chord consonance by controlling spectral components of its component pitches in additive sound synthesis (in Polish); Proceedings of the XXV Konferencja Inżynierii Akustycznej i Biomedycznej, Kraków-Zakopane, March 28-31, 2023
  • 3. M. Pluta; Impact on the sensation of consonance by controlling spectral components of simultaneous pitches consisting a chord in sound synthesis using the additive method; Vibrations in Physical Systems, 2023, 34(2), 2023209; DOI: 10.21008/j.0860-6897.2023.2.09
  • 4. A.H. Benade; Fundamentals of Musical Acoustics; Dover Publications, 1990
  • 5. G. Wieliczko; The study of harmonics of sound’s components produced by a string of an electric guitar (in Polish); Engineering thesis, AGH University of Science and Technology, Krakow, 2018
  • 6. M. Toporowski, M. Pilch; Old temperaments. Basics of acoustics and practical implementation (in Polish); Wydawnictwo Akademii Muzycznej im. Karola Szymanowskiego w Katowicach, 2014
  • 7. M. Pluta; Principles of music and musical notation (in Polish); Wydawnictwa AGH, Krakow, Poland, 2012
  • 8. N. Di Stefano, P. Vuust, E. Brattico; Consonance and dissonance perception. A critical review of the historical sources, multidisciplinary findings, and main hypotheses; Physics of Life Reviews, 2022, 43, 273-304; DOI: 10.1016/j.plrev.2022.10.004
  • 9. T. Pankovski, E. Pankovska; Emergence of the consonance pattern within synaptic weights of a neural network featuring Hebbian neuroplasticity; Biologically Inspired Cognitive Architectures, 2017, 22, 82-94; DOI: 10.1016/j.bica.2017.09.001
  • 10. P.N. Vassilakis; Perceptual and Physical Properties of Amplitude Fluctuation and their Musical Significance; Doctoral Dissertation, Los Angeles: University of California, Los Angeles, 2001
  • 11. P.N. Vassilakis; Auditory roughness as a means of musical expression; Selected Reports in Ethnomusicology, 2005, 12, 119-144
  • 12. E. Terhardt; On the Perception of Periodic Sound Fluctuations (Roughness); Acustica, 1974, 30(4), 201-213
  • 13. W. A. Sethares; Tuning, Timbre, Spectrum, Scale, 2nd ed.; Springer, London, 2005
  • 14. M. Puckette; The Theory and Technique of Electronic Music; World Scientific, Singapore, 2007
  • 15. E. Ozimek; Sound and its perception. Physical and psychoacoustical aspects (in Polish); Wydawnictwo Naukowe PWN, 2002
  • 16. J.L. Flanagan, R. M. Golden; Phase Vocoder; Bell System Technical Journal, 1966, 45(9), 1493-1509
  • 17. M.R. Portnoff; Implementation of the digital phase vocoder using the fast Fourier transform; IEEE Transactions on Acoustics, Speech, and Signal Processing, 1976, 24(3), 243-248
  • 18. J.A. Moorer; The use of the phase vocoder in computer music applications; Journal of the Audio Engineering Society, 1978, 26(1/2), 42-45
  • 19. M.K. Klingbeil; Spectral Analysis, Editing, and Resynthesis: Methods and Applications; PhD thesis, Columbia University, New York, NY, USA, 2009
  • 20. R.J. McAulay, T.F. Quatieri; Speech analysis/synthesis based on a sinusoidal representation; IEEE Transactions on Acoustics Speech and Signal Processing, 1986, 34(4), 744-754
  • 21. M. Klingbeil; Software for spectral analysis, editing, and synthesis; Proceedings of the 2005 International Computer Music Conference, ICMC 2005, Barcelona, Spain, September 4-10, 2005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a30447b0-a33f-4aac-8708-4b6fb9c21c18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.