Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI) with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
177--184
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, 10000 Zagreb, Croatia
autor
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, 10000 Zagreb, Croatia
autor
- Universita della Calabria, Dipartimento di Ingegneria per l’Ambiente e il Territorio e Ingegneria Chimica, Ponte P. Bucci, Cubo 45 A, 87036 Rende (CS), Italia
autor
- Polish Academy of Sciences, Institute of Metallurgy and Materials Science, Reymonta 25, 30-059 Kraków, Poland
Bibliografia
- 1. Iwamoto M., Hamada H., Catal. Today., 10 (1991), 57.
- 2. Li Y., Hall W.K.J., J. Phys. Chem., 94 (1990), 6145.
- 3. Čejka J., Centi G., Perez-Pariente J., Roth W.J., Catal. Today., 179 (2012), 2.
- 4. Lisi L., Pirone R., Russo G., Stanzione V., Chem. Eng. J., 154 (2009), 341.
- 5. Deeng K.D., Mohamed A.R., Bhatia S., Chem. Eng. J., 103 (2004), 147.
- 6. Martinez C., Corma A., Coordin. Chem. Rev., 255 (2011), 1558.
- 7. Pereda-Ayo B., De La Torre U., Illán-Gómez M.J., Bueno-López A., González-Velasco J.R., Appl. Catal. B-Environ., 147 (2014), 420.
- 8. Wichterlova B., Dedecek J., Sobalik Z., Vondova A., Klier K., J. Catal., 169 (1997), 194.
- 9. Shichi A., Katagi K., Satsuma A., Hattori T., Appl. Catal. B-Environ., 24 (2000), 97.
- 10. Carl P.J., Larsen S.C., J. Phys. Chem. B., 104 (2000), 6568.
- 11. Moden B., Da Costa P., Fonfe B., Lee D.K., Iglesia E., J. Catal., 209 (2002), 75.
- 12. Kuroda Y., Iwamoto M., Top. Catal., 28 (1–4) (2004), 111.
- 13. Lee D.K., Korean J. Chem. Eng., 21 (3) (2004), 611.
- 14. Smeets P.J., Sels B., Van Teeffelen F.R.M., Leeman H., Hensen E.J.M., Schoonheydt R.A., J. Catal., 256 (2008), 183.
- 15. Schay Z., James V.S., Pal-Borbely G., Beck A., Ramaswamy A.V., Guczi L., J. Mol. Catal. AChem., 162 (2000), 191.
- 16. Roy S., Hegde M.S., Madras G., Appl. Energ., 86 (2009), 2283.
- 17. Fierro G., Ferraris G., Moretti G., Appl. Catal. B-Environ., 91 (2009), 499.
- 18. Park S.K., Kurshev V., Luan Z., Lee C.W., Kevan L., Micropor. Mesopor. Mat., 38 (2000), 255.
- 19. Pulido A., Nachtigall P., Chem. Cat. Chem., 1 (2009), 449.
- 20. Dĕdeček J., Wichterlová B., J. Phys. Chem., 98 (1994), 5721.
- 21. Wichterlova B., Dedecek J., Vondrova A., J. Phys. Chem., 99 (4) (1995), 1065.
- 22. Tomašić V., Gomzi Z., Zrnčević S., Appl. Catal. B-Environ., 18 (1998), 233.
- 23. Katovic A., Giordano G., Kowalak S., Impact of Zeolites and Another Porous Materials on new Technologies at the Beginning of a New Millenium., in: Aiello R., Testa F., Giordano G. (Eds.), Studies in Surface Science and Catalysis., Vol. 142, Elsevier, Amsterdam, 2002, p.39.
- 24. Toktarev A.V, Echevskii G.V., Hofmeister Anion Effect on the Formation of Zeolite Beta., in: Gédéon A., Massiani P., Babonneau F. (Eds.), Studies in Surface Science and Catalysis., Vol. 174, Elsevier, Amsterdam, 2008, p.167.
- 25. Beutel T., Sarkany J., Lei G.D., Yan J.Y., Sachtler W.M.H., J. Phys. Chem., 100 (1996), 845.
- 26. Yan J.Y., Lei G.D., Sachtler W.M.H., Kung H.H., J. Catal., 161 (1996), 43.
- 27. Soriaj., Martinez-Arias A., Martinezchaparro A., Conesa J.C., Schay Z., J. Catal., 190 (2000), 352.
- 28. Anpo M., Matsuoka M., Shioya Y., Yamashita H., Giamello E., Morterra C., Che M., Patterson H.H., Webber S., Ouellette S., Fox M.A.J., J. Phys. Chem., 98 (1994), 5744.
- 29. Larsen S.C., Aylor A., Bell A.T., Reimer J.A.J., J. Phys. Chem., 98 (1994), 11533.
- 30. Sobczak I., Ziolek M., Renn M., Decyk P., Nowak I., Daturi M., Lavalley J.C., Micropor. Mesopor. Mat., 74 (2004), 23.
- 31. Dossi C., Fusi A., Recchia S., Psaro R., Moretti G., Micropor. Mesop. Mat., 30 (1999), 165.
- 32. Laidler K.J., Chemical Kinetics., McGraw-Hill, London, 1965.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a3008b79-a7f0-40bb-941b-1707e6e1d56d