Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We deal with the approximation properties of a new class of positive linear Durrmeyer type operators which offer a reconstruction of integral type operators including well known Durrmeyer operators. This reconstruction allows us to investigate approximation properties of the Durrmeyer operators at the same time. It is first shown that these operators are a positive approximation process in Lp (R+). While we are showing this property of the operators we consider the Ditzian-Totik modulus of smoothness and corresponding K-functional. Then, weighted norm convergence, whose proof is based on Korovkin type theorem on Lp (R+), is given. At the end of the paper we show several examples of classical sequences that can be obtained from the Ibragimov-Gadjiev-Durrmeyer operators.
Wydawca
Czasopismo
Rocznik
Tom
Strony
156--174
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Department of Mathematics, Çankırı Karatekin University, TR-18100, Çankırı, Turkey
autor
- Department of Mathematics, Kırıkkale University, TR-71450, Kirikkale, Turkey
Bibliografia
- [1] Ditzian Z., Ivanov K., Bernstein-type operators and their derivatives, J. Approx. Theory, 1989, 56, 72-90
- [2] Heilmann M., Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 1989, 5 (1), 105–127
- [3] Agrawal P. N., Mohammad A. J., On Lp-approximation by a linear combination of a new sequence of linear positive operators, Turk. J. Math, 2003, 27, 389-405
- [4] Dzjadyk V. K., Approximation of functions by positive linear operators and singular integrals, (Russ.) Mat. Sb. (N,S), 1966, 112 (70), 508–517
- [5] Gadjiev A. D., Aral A., Weighted Lp-approximation with positive linear operators on unbounded sets, Appl. Math. Lett., 2007, 20 (10), 1046–1051
- [6] Gadjiev A. D., Ibragimov I.I., Ibragimov I.I., On a sequence of linear positive operators, 1970, 11, 1092-1095
- [7] Aral A., Approximation by Ibragimov-Gadjiyev operators in polynomial weighted space, Proc. of IMM of NAS of Azerbaijan, 2003, XIV, 35–44
- [8] Coskun T., On a Construction of positive linear operators for approximation of continuous functions in the weighted spaces, J. Comp. Anal. and Appl., 2011, 13 (4), 756-770
- [9] Doğru O., On a certain family of linear positive operators, Turkish J. Math., 1997, 21 (4), 387–399
- [10] Dogru, O., On the order of approximation of unbounded functions by the family of generalized linear positive operators, Commun Fac. Sci. Univ. Ankara, Series A1, 1997, 46, 173-181
- [11] Gadjiev A. D., Ispir N., On a sequence of linear positive operators in weighted spaces, Proc. of IMM of Azerbaijan AS, 1999, Vol. XI(XIX), 45-56
- [12] Aral A., Acar T., Modern mathematical methods and high performance computing in science and technology, 1–15, Springer Proc. Math. Stat., 171, (Springer, Singapore, 2016)
- [13] Ditzian, Z., Totik, V., Moduli of Smoothness, Springer Series in Computational Mathematics 9, (Springer-Verlag, Berlin, Heidelberg, Newyork, 1987)
- [14] Bergh J., Löfström J., Interpolation Spaces, An Introduction, Springer-Verlag, Berlin, heidelberg, New York, 1976
- [15] Mazhar S. M., Totik V., Approximation by modied Szasz operators, Acta Sci. Math., 1985, 49 , 257-269
- [16] Sahai A., Prasad G., On simultaneous approximation by modied Lupas operators, J. Approx. Theory, 1985, 45 (12), 122–128
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a30009b6-d737-4cd2-9aed-8f9d7a0da1c5