PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Topological insulators based on the semi-metallic HgCdTe

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The review of peculiarity of growth and experimental results of the magneto-transport measurements (longitudinal magneto-resistance Rxx and the Hall resistance Rxy) over a wide interval of temperatures for several samples of Hg1−xCdxTe (x ≈ 0.13–0.15) grown by MBE is presented in this paper. An amazing temperature stability of the SdH-oscillation period and amplitude is observed in the entire temperature interval of measurements up to 50 K. Moreover, the quantum Hall effect (QHE) behaviour of the Hall resistance was shown in the same temperature interval. These peculiarities of the Rxx and Rxy for strained thin layers are interpreted using quantum Hall conductivity (QHC) on topologically protected surface states (TPSS). In the case of not strained layers it is assumed that the QHC on the TPSS contributes also to the conductance of the bulk samples. The experimental results on magneto-transport (QHC and SdH) obtained for the strained 100 nm thickness Hg1−xCdxTe layer are interpreted on the basis of the 8 × 8 kp model and an advantage of the Hg1−xCdxTe as topological insulators is shown. This article is an expanded version of the scientific reports presented at the International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22–25, 2016, Rzeszow, Poland.
Twórcy
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
autor
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
  • Centre for Microelectronics and Nanotechnology, University of Rzeszow, ul. Pigonia 1, 35-959 Rzeszow, Poland
Bibliografia
  • [1] P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photodetector designs, Appl. Phys. Rev. 1 (2014) 041102.
  • [2] G. Tomaka, J. Grendysa, P. Śliż, C.R. Becker, J. Polit, R. Wojnarowska, A. Stadler, E.M. Sheregii, High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction, Phys. Rev. B 93 (2016) 205419.
  • [3] Shun-Qing Shen, Topological Insulators. Dirac Equation in Condensed Matter. Springer Series in Solid State Science, vol. 174, Springer, Berlin, 2013.
  • [4] C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95 (2005) 226801–226804.
  • [5] B.A. Bernevig, S.-C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96 (2006) 106802–106804.
  • [6] B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314 (2006) 1757–1761.
  • [7] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, Xiao-Lian Qiand, S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318 (2007) 766–770.
  • [8] Liang Fu, C.L. Kane, E.J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98 (2007) 106803–106804.
  • [9] Liang Fu, C.L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76 (2007) 045302–045317.
  • [10] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, M.Z. Hasan, A topological Dirac insulator in a quantum spin Hall phase, Nature 452 (2008) 970–974.
  • [11] C. Brüne, C.X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y.L. Chen, X.L. Qi, Z.X. Shen, S.-C. Zhang, L.W. Molenkamp, Quantum Hall effect from the topological surface states of strained bulk HgTe, Phys. Rev. Lett. 106 (2011) 126803–126804.
  • [12] A. Delin, T. Klüner, Excitation spectra and ground-state properties from density-functional theory for the inverted band-structure systems b-HgS, HgSe, and HgTe, Phys. Rev. B 66 (2002) 035117–035118.
  • [13] M.Z. Hasan, C.L. Kane, Topological insulators, Rev. Mod. Phys. 82 (2010) 3045–3067.
  • [14] Xiao-Liang Qi, Shou-Cheng Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83 (2011) 1057–1110.
  • [15] M. Berry, Geometric phase memories, Nat. Phys. 6 (2010) 148–150.
  • [16] J.E. Moore, L. Balents, Topological invariants of time-reversal-invariant band structures, Phys. Rev. B 75 (2007), 121306-4 R.
  • [17] Jeffrey C.Y. Teo, Liang Fu, C.L. Kane, Surface states and topological invariants in three-dimensional topological insulators: application to Bi1-x Sbx, Phys. Rev. B 78 (2008) 045426–045429.
  • [18] Liang Fu, C.L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100 (2008), 096407-096404.
  • [19] I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-heusler alloys, Phys. Rev. B 66 (2002), 174429–9.
  • [20] Wenjie Xie, Anke Weidenkaff, Xinfeng Tang, Qingjie Zhang, Joseph Poon, Terry M. Tritt, Recent advances in nanostructured thermoelectric half-heusler compounds, Nanomaterials 2 (2012) 379–412.
  • [21] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the Surface, Nat. Phys. 5 (2009) 398–402.
  • [22] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the Surface, Nat. Phys. 5 (2009) 438–442.
  • [23] Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.-C. Zhang, I.R. Fisher, Z. Hussain, Z.X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3, Science 325 (2009) 178–181.
  • [24] D.X. Qu, Y.S. Hor, J. Xiong, R.J. Cava, N.P. Ong, Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3, Science 329 (2010) 821–824.
  • [25] Tong Zhang, Jeonghoon Ha, Niv Levy, Young Kuk, Joseph Stroscio, Electric-field tuning of the surface band structure of topological insulator Sb2Te3 thin films, Phys. Rev. Lett. 111 (2013) 056803–0568035.
  • [26] Bahadur Singh, Ashutosh Sharma, H. Lin, M.Z. Hasan, R. Prasad, A. Bansil, Opological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors, Phys. Rev. B 86 (2012), 115208–115207.
  • [27] T. Sato, Kouji Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Yoichi Ando, T. Takahashi, Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator, Nat. Phys. 7 (2011)840–844.
  • [28] Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M.Z. Hasan, Y.P. Chen, Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator, Nat. Phys. 10 (2014)956–963.
  • [29] R. Dornhaus, G. Nimtz, Narrow gap semiconductors Springer Tracts in Modern Physics, vol. 98, Springer, Berlin, 1983.
  • [30] A. Rogalski, History of infrared detectors, Opto-Electron. Rev. 20 (3) (2012) 279–308.
  • [31] A. Rogalski, Recent progress in infrared detector technologies, Infrared Phys. Technol. 54 (3) (2011) 136–154.
  • [32] D.A. Kozlov, Z.D. Kvon, E.B. Olshanetsky, N.N. Mikhailov, S.A. Dvoretsky, D.Weiss, Transport properties of a 3D topological insulator based on a strained high-mobility HgTe film, Phys. Rev. Lett. 112 (2014) 196801–196805.
  • [33] Z. Zang, A. Nakamura, J. Temmyo, Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application, Opt. Express 21(2013) 11448–11456.
  • [34] Z. Zang, A. Nakamura, J. Temmyo, Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature, Mater. Lett. 92 (2013)188–191.
  • [35] J. Schmidt, K. Ortner, J. Jensen, C. Becker, Molecular beam epitaxially grown n type Hg0.80Cd0.20Te (112) B using iodine, J. Appl. Phys. 91 (2002) 451–455.
  • [36] A. Kisiel, M. Podgórny, A. Rodzik, W. Giriat, Fundamental reflection of CdxHg1-xTe crystals in the 1.9 to 3.1 eV energy range, Phys. Status Solidi B 71(1975) 457–460.
  • [37] J.G. Analytis, R.D. McDonald, S.C. Riggs, J.-H. Chu, G.S. Boebinger, I.R. Fisher, Two-dimensional surface state in the quantum limit of a topological insulator, Nat. Phys. 6 (2010) 960–964.
  • [38] B.F. Gao, P. Gehring, M. Burghard, K. Kern, Gate-controlled linear agnetoresistance in thin BSe3 sheets, Appl. Phys. Lett. 100 (2012) 212402.
  • [39] J. Olea, G. Gonzalez-Daz, D. Pastor, I. Martil, A. Mart, E. Antoln, A. Luque, Two-layer Hall effect model for intermediate band Ti-implanted silicon, J. Appl. Phys. 109 (2011), 063718-8.
  • [40] G.M. Gusev, Z.D. Kvon, E.B. Olshanetsky, A.D. Levin, Y. Krupko, J.C. Portal, N.N. Mikhailov, S.A. Dvoretsky, Temperature dependence of the resistance of a two-dimensional topological insulator in a HgTe quantum well, Phys. Rev. B 89 (2014), 125305–5.
  • [41] J.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197–200.
  • [42] Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438 (2005) 201–204.
  • [43] Yia-Chung Chang, J.N. Schulman, G. Bastard, Y. Guldner, M. Voos, Effects of quasi-interface states in HgTe-CdTe superlattices, Phys. Rev. B 31 (1985), 2557-2554.
  • [44] Jie Ren, Guang Bian, Li Fu, Chang Liu, Tao Wang, Gangqiang Zha, Wanqi Jie, Madhab Neupane, T. Miller, M.Z. Hasan, T.-C. Chiang, Electronic structure of the quantum spin Hall parent compound CdTe and related topological issues, Phys. Rev. B 90 (2014) 205211–205216.
  • [45] Christoph Brüne, Cornelius Thienel, Michael Stuiber, Jan Böttcher, Hartmut Buhmann, Elena G. Novik, Chao-Xing Liu, Ewelina M. Hankiewicz, Laurens W. Molenkamp, Dirac-screening stabilized surface-state transport in a topological insulator, Phys. Rev. X 4 (2014) 041045–041046.
  • [46] E.H. Hwang, S. Das Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene, Phys. Rev. B 75 (2007), 205418–6.
  • [47] Steffen Wiedmann, Andreas Jost, Cornelius Thienel, Christoph Brüne, Philipp Leubner, Hartmut Buhmann, Laurens W. Molenkamp, J.C. Maan, Uli Zeitler, Temperature-driven transition from a semiconductor to a topological insulator, Phys. Rev. B 91 (2015) 205311–205317.
  • [48] M. Marchewka, Formation of Dirac point and the topological surface states inside the strained gap for mixed 3D Hg1-xCdxTe, Physica E 84 (2016) 407–414.
  • [49] Daniel Bulmash, Chao-Xing Liu, Xiao-Liang Qi, Prediction of a weyl semimetal in Hg1-x-y CdxMnyTe, Phys. Rev. B 89 (2014), 081106-5(R-4).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2fdf9b5-f8de-45e1-8577-81ff6903a029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.