Identyfikatory
Warianty tytułu
Biomechaniczne podstawy i zalety aktywnych ortezw terapii skoliozy idiopatycznej
Języki publikacji
Abstrakty
The aim of this article is to provide a biomechanical analysis of different types of orthoses, with a particular focus on thebenefitsof an active sensor orthosis. The first part of the article focuses on the biomechanics of passive orthoses, which use constant correctiveforces exerted by rigid braceon the patient's body. The principles of such braces, their effect on spinal alignmentand the limitations of their static nature are discussed. The second part focuses on active orthoses, which integrate modern technologies, such as sensors, to dynamically adjust the corrective forces to the patient's current state. Current solutions that allow monitoring and adaptation of the brace's performance are discussed, which significantly increases the effectivenessof treatment. The final part of the article focuses on the advantages of active orthoses in scoliosis therapy compared to traditional passive orthoses.The active therapeutic approach allows the brace's action to be dynamically adapted to the patient's current needs, which increases wearing comfortand treatment effectiveness. The use of technology also enables ongoing assessment of therapy progress and better adaptation of corrective forcesto the patient's individual anatomical and biomechanical characteristics.
Celem tego artykułu jest biomechaniczna analiza różnych typów ortez, ze szczególnym uwzględnieniem korzyści wynikających z zastosowania aktywnej ortezy z czujnikami. Pierwsza część artykułu skupia się na biomechanice ortezy pasywnej, która wykorzystuje stałe siły korekcyjne wywierane przez sztywne elementy gorsetu na ciało pacjenta. Omówiono zasady działania takich gorsetów, ich wpływ na ustawienie kręgosłupa oraz ograniczenia wynikające z ich statycznego charakteru. Druga część dotyczy ortez aktywnych, które integrują nowoczesne technologie, takie jak sensory, umożliwiające dynamiczne dostosowanie sił korekcyjnych do bieżącego stanu pacjenta. Zostały omówione dotychczasowe rozwiązania, które pozwalająna monitorowanie i adaptację działania gorsetu, co znacząco zwiększa efektywność leczenia. Ostatnia część artykułu skupia się na zaletach ortezy aktywnej w terapii skoliozy w porównaniu do tradycyjnych ortez pasywnych. Aktywne podejście terapeutyczne pozwala na dynamiczne dostosowywanie działania gorsetu do bieżących potrzeb pacjenta, co zwiększa komfort noszenia i efektywność leczenia. Wykorzystanie technologii umożliwia także bieżącą ocenę postępów terapii oraz lepsze dostosowanie sił korekcyjnych do indywidualnych cech anatomicznych i biomechanicznych pacjenta.
Rocznik
Tom
Strony
50--54
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
- Lublin University of Technology, Department of Electrical Devices and High Voltage Technology, Lublin, Poland
Bibliografia
- [1] Ali A., Fontanari V., Schmölz W.: Active soft brace for scoliotic spine: A finite element study to evaluate in-brace correction. Robotics 11(2), 2022, 37.
- [2] Archibald D., et al.: Portable biofeedback device for rehabilitating children with scoliosis between ages of 3-10 years and their posture correction. 3rd International Conference on Electronics Computer Technology 3, 2011, 234–238.
- [3] Bache B. A., Iftikhar O., Dehzangi O.: Brace treatment monitoring solution for idiopathic scoliosis patients. 16th IEEE international conference on machine learning and applications (ICMLA). IEEE, 2017, 580–585.
- [4] Bansode S., et al.: Design and implementation of regulated-pressure brace with on-board control and monitoring abilities for the treatment of scoliosis. 2nd IEEE Int. Conf. on Electrical, Computer and Communication Technologies – ICECCT, 2017, 1–5.
- [5] Bazzarelli M., et al.: A low power hybrid posture monitoring system. Canadian Conference on Electrical and Computer Engineering 2, 2001, 1373–1378.
- [6] Bochenek A., Reicher M.: Anatomia człowieka, tom I: Anatomia ogólna, kości, stawu, więzadła i mięśnie. PZWL, Warszawa 1978.
- [7] Bonnet V., et al.: Automatic estimate of back anatomical landmarks and 3D spine curve from a Kinect sensor. 6th IEEE International Conference on Biomedical Robotics and Biomechatronics – BioRob. IEEE, 2016, 924–929.
- [8] Burwell R. G., et al.: Etiologic theories of idiopathic scoliosis: neuro developmental concept of maturational delay of the CNS body schema ("body in-the-brain"). Studies in Health Technology and Informatics 123, 2006, 72.
- [9] Chalmers E., et al.: Development of a pressure control system for brace treatment of scoliosis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 20(4), 2012, 557–563.
- [10] Dehzangi O., et al.: A smart point-of-care compliance monitoring solution for brace treatment of adolescent idiopathic scoliosis patients. Smart Health 21, 2021, 100179.
- [11] Dehzangi O., et al.: Force and activity monitoring system for scoliosis patients wearing back braces. IEEE International Conference on Consumer Electronics (ICCE), 2018, 1–4.
- [12] Dehzangi O., Mohammadi M., Li Y.: Smart brace for monitoring patients with scoliosis using a multimodal sensor board solution. IEEE Healthcare Innovation Point-of-Care Technologies Conference – HI-POCT, 2016, 66–69.
- [13] Durdle N. G., et al.: Computer graphics and imaging tools for the assessment and treatment of spinal deformities. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery – CCECE'97. Conference Proceedings 2, 1997.
- [14] Evans K. R., Lou E., Faulkner G.: Optimization of a low-cost force sensor for spinal orthosis applications. IEEE Transactions on Instrumentation and Measurement 62(12), 2013, 3243–3250.
- [15] Fuss F. K., et al.: Pressure sensor system for customized scoliosis braces. Sensors 21(4), 2021, 1–19.
- [16] Grycuk S., Mrozek P.: Numerical and experimental analysis of orthopedic brace for treatment of idiopathic scoliosis. Advances in Biomedical Engineering. Oficyna Wydawnicza Politechniki Białostockiej, Białystok 2023, 15–30.
- [17] Hudák R., et al.: The use of matrix tactile sensors (MTS) for diagnostics of the efficiency of production, testing and application of a trunk orthosis. 13th International Symposium on Computational Intelligence and Informatics – CINTI, 2012, 299–304.
- [18] Hueter C.: Anatomische Studien an den Extremitaetengelenken Neugeborener und Erwachsener. Virchows Arch 25(1862), 572–599.
- [19] Karol L. A., et al.: Effect of compliance counseling on brace use and success in patients with adolescent idiopathic scoliosis. JBJS 98(1), 2016.
- [20] Kotwicki T., Cheneau J.: Biomechanical action of a corrective brace on thoracic idiopathic scoliosis: Cheneau 2000 orthosis. Disability and Rehabilitation: Assistive Technology 3(3), 2008, 146–153.
- [21] Lalouani W., et al.: Energy-efficient collection of wearable sensor data through predictive sampling. Smart Health 21, 2021, 100208.
- [22] Lee D.: Obręcz biodrowa. Badanie i leczenie okolicy lędźwiowo-miedniczno biodrowej. DB Publishing, Warszawa 2005.
- [23] Lou E., et al.: Intelligent brace system for the treatment of scoliosis. Studies in Health Technology and Informatics 91(4), 2002, 397–400.
- [24] Lou E., et al.: A system for measuring pressures exerted by braces in the treatment of scoliosis. IEEE Transactions on Instrumentation and Measurement 43(4), 1994, 661–664.
- [25] Lou E., et al.: Load compliance monitor system for the treatment of scoliosis. Canadian Conference on Electrical and Computer Engineering 3, 1999, 1501–1505.
- [26] Lou E., et al.: An objective measurement of brace usage for the treatment of adolescent idiopathic scoliosis. Medical Engineering and Physics 33(3), 2011, 290–294.
- [27] Lou E., et al.: A low power wireless load monitoring system for the treatment of scoliosis. IEEE Transactions on Instrumentation and Measurement 51(5), 2002, 908–911.
- [28] Lou E., et al.: An intelligent active brace system for the treatment of scoliosis. IEEE Transactions on Instrumentation and Measurement 53(4), 2004, 1146–1151.
- [29] Lou E., et al.: The continuous measurement of pressures exerted by braces in the treatment of scoliosis. 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ. San Diego, 1993, 983–984.
- [30] Negrini S., et al.: 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis and Spinal Disorders 13, 2018, 1.
- [31] Negrini S., et al.: Braces for idiopathic scoliosis in adolescents. Cochrane Database of Systematic Reviews 6, 2015, CD006850.
- [32] Perie D., De Gauzy J. S., Hobatho M. C.: Biomechanical evaluation of Cheneau Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method. Medical and Biological Engineering and Computing 40, 2002, 296–301.
- [33] Rigo M. D., Villagrasa M., Gallo D.: A specific scoliosis classification correlating with brace treatment: Description and reliability. Scoliosis 5(1), 2010, 1–11.
- [34] Rigo M., Jelačić M.: Brace technology thematic series: The 3D Rigo Chêneau type brace. Scoliosis and Spinal Disorders 12(1), 2017.
- [35] Rigo M., et al.: SOSORT consensus paper on brace action: TLSO biomechanics of correction (investigating the rationale for force vector selection). Scoliosis 1(1), 2006, 1–8.
- [36] Rigo M., Weiss H.: The Chêneau concept of bracing-Biomechanical aspects. Studies in Health Technology and Informatics 135, 2008, 303.
- [37] Sardini E., Serpelloni M., Ometto M.: Smart vest for posture monitoring in rehabilitation exercises. IEEE Sensors Applications Symposium Proceedings – SAS, 2012, 161–165.
- [38] Stokes I. A. F., Burwell R. G., Dangerfield P. H.: Biomechanical spinal growth modulation and progressive adolescent scoliosis–a test of the ‘vicious cycle’ pathogenetic hypothesis: Summary of an electronic focus group debate of the IBSE. Scoliosis 1, 2006, 1–21.
- [39] Tan Z., et al.: An automatic scoliosis diagnosis and measurement system based on deep learning. IEEE International Conference on Robotics and Biomimetics, ROBIO 2018, 439–443.
- [40] Tymińska P., et al.: TLSO with Graphene Sensors – An Application to Measurements of Corrective Forces in the Prototype of Intelligent Brace. Sensors 22(11), 2022, 4015.
- [41] Visser D., et al.: Computer-aided optimal design of custom scoliosis braces considering clinical and patient evaluations. Computer Methods and Programs in Biomedicine 107(3), 2012, 478–489.
- [42] Von Volkmann R.: Veilletzungen und Krankenheiten der Berwegungsorgane. Handbuch der Allgemeinen und Speciellen Chirurgs, 1882, 234–920.
- [43] Wood G. I., Rigo M.: The principles and biomechanics of the Rigo Chêneau type brace. Innovations in Spinal Deformities and Postural Disorders. IntechOpen, 2017.
- [44] Zaborowska-Sapeta K.: Dynamika zmiany rotacji tułowia u pacjentów leczonych gorsetem typu Chêneau z powodu młodzieńczej skoliozy idiopatycznej. Uniwersytet Warmińsko-Mazurski w Olsztynie, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2fccfb2-ff37-4bd7-b0ca-3a8b46c6fb74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.