PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of reliability and maintenance plan of the high-pressure fuel pump system on marine engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a method of adjusting and designing the maintenance scheme for the high-pressure fuel pumps of a slow-speed two-stroke marine engine, MAN 6S70MC-C. The maintenance database for the marine fuel system was obtained from the planned maintenance software, and covered a period of 11 years. During this period, 29 failures occurred that required corrective actions. Our methodology includes failure mode analysis, risk analysis, reliability calculation and maintenance interval adjustment. Each failure is described using a failure mode analysis, based on a combination of the mode and cause of failure. The objective of this study is to recommend a new preventive maintenance interval based on the exponential reliability results and the analysed maintenance data. The initial maintenance plan for each fuel pump was set to 8,000 running hours, whereas in the modified plan, it is recommended to set this to 4,000 hours. Our results show an increase in the system reliability from 60% to 95% when the new modified maintenance plan is applied. In addition, the results and the recommended initial maintenance schedule are validated based on three similar types of engine with the same fuel pump system. The new maintenance approach can reduce the risk of component failure, which will lead to increased reliability of the fuel pump system and the optimisation of maintenance costs.
Rocznik
Tom
Strony
97--104
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • University of Zadar Department of Maritime Studies Croatia
  • University of Split Faculty of Maritime Studies Croatia
  • University of Zadar Maritime Department M. Pavlinovića 1 23000 Zadar Croatia
autor
  • University of Zadar Maritime Department M. Pavlinovića 1 23000 Zadar Croatia
Bibliografia
  • 1. Revised ISM code, Effective from 1 January 2015. [Online]. Available: https://www.classnk.or.jp/hp/pdf/activities/ statutory/ism/ISM_Cd/ISM-Code-e.pdf. [Accessed: Sept. 2, 2022].
  • 2. V. Knežević, L. Stazić, J. Orović, and L. Mihanović, “Use of PMS continuous improvement scheme for maintenance adjustments in shipping industry,” Book of Proceedings - 8th International Maritime Science Conference,12.04.2019., pp. 415-420, Budva, Montenegro.
  • 3. C. Karatuğ and Y.Arslanoğlu, “Importance of early fault diagnosis for marine diesel engines: a case study on efficiency management and environment”, Ships and Offshore Structures, vol. 17, pp. 472-480, 2022, doi: 10.1080/17445302.2020.1835077.
  • 4. A. Prajapati, J. Bechtel, and S. Ganesan, “Condition based maintenance: a survey”, Journal of Quality in Maintenance Engineering, vol. 18, no. 4, pp. 384-400, 2012, doi.org/10.1108/ 13552511211281552.
  • 5. Ç. Karatuğ and Y. Arslanoğlu, “Development of condition-based maintenance strategy for fault diagnosis for ship engine systems,” Ocean Engineering, vol. 256, 2022, doi.org/10.1016/j. oceaneng.2022.111515.
  • 6. F. Vera-García, J. A. Pagán Rubio, J. Hernández Grau, D. Albaladejo Hernández, “Improvements of a failure database for marine diesel engines using the RCM and simulations,” Energies, vol. 13, p. 104, 2020, https://doi.org/10.3390/ en13010104.
  • 7. T. O. Alamri and J. P. T. Mo, “Optimisation of preventive maintenance regime based on failure mode system modelling considering reliability,” Arab. J. Sci. Eng., vol. 49, 2022, https:// doi.org/10.1007/s13369-022-07174-w.
  • 8. T. Song, T. Tan, and G. Han, “Research on preventive maintenance strategies and systems for in-service ship equipment,” Polish Maritime Research, vol. 29, no. 1, pp. 85-96, 2022, https://doi.org/10.2478/pomr-2022-0009.
  • 9. H. Nguyen, “Fuzzy methods in risk estimation of the ship system failures based on the expert judgments,” Journal of KONBiN, vol. 43, pp. 393-403, 2017, doi:10.1515/jok-2017 -0058.
  • 10. M. Bayraktar and M. Nuran, “Reliability, availability, and maintainability analysis of the propulsion system of a fleet,” Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie, vol. 70, no. 142, pp. 63-70, 2022.
  • 11. C. Velasco-Gallego and I. Lazakis, “RADIS: A real-time anomaly detection intelligent system for fault diagnosis of marine machinery,” Expert Systems with Applications, vol. 204, p. 117634, 2022.
  • 12. J.Cullum et.al., “Risk-based maintenance scheduling with application to naval vessels and ships,” Ocean Engineering, vol. 148, 2018, pp. 476-485, https://doi.org/10.1016/j. oceaneng.2017.11.044.
  • 13. B. Vučinić, “MA-CAD, Maintenance Concept Adjustment and Design,” University of Delft, Faculty of Mechanical Engineering and Marine Technology, 1994.
  • 14. A. Bukša, I. Šegulja, and V. Tomas, “The adjustment of the maintenance approach for improved operability and safety of ship navigation,” Promet—Traffic & Transportation, vol. 22, no. 2, pp. 95-103, 2010, doi.org/10.7307/ ptt.v22i2.168.
  • 15. L. Stazić, et al., “Maintenance interval adjustment based on the experience: Case study of marine air compressor system,” Naše More: International Journal of Maritime Science and Technology, vol. 67, no. 2, pp. 146-152, 2020, doi:10.17818/ NM/2020/2.7.
  • 16. L. Vogdrup-Schmidt, “The shipping industry is too conservative and passive.” [Online] Available: https:// shippingwatch.com/Services/article7817989.ece. [Accessed: Sept. 13, 2022].
  • 17. M. E. Manuel, “Maritime risk and organizational learning,” ebook (1st ed.). CRC Press, 2012, doi: 10.1201/9781315593937.
  • 18. T. Teijl, “Innovating in the maritime cluster,” Master’s thesis, Delft University of Technology, The Netherlands, 2014.
  • 19. A. Bukša, D. Martinović, and M. Vidaković, “Failure analysis of the diesel engine ship propulsion system,” Pomorstvo: Scientific Journal of Maritime Research, vol. 23, no. 2, pp. 391- 404, 2009.
  • 20. MAN B&W: Volume II Maintenance: S70MC-C, E[Online] Available: https://engine.od.ua/man-70m [Accessed: Dec. 02, 2022].
  • 21. Lloyd’s Register, “Rules and regulations for the classification of ships, Part 5: Main and auxiliary machinery,” London, United Kingdom, 2013. [Online]. Available: http://docshare04. docshare.tips/files/30667/306670934.pdf. [Accessed: Sept. 12, 2022].
  • 22. Amos Business Suite version 9.0 – Maintenance software program, [Online] Available: https://amos-business-suite. software.informer.com/ [Accessed: Dec. 2, 2022].
  • 23. C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, 3rd ed. Waveland Press: Long Groove, IL, USA, 2019. ISBN 978-1-4786-3933-6.
  • 24. O. Dinu and A. M. Ilie, ”Maritime vessel obsolescence, life cycle cost and design service life,” IOP Conference Series: Materials Science and Engineering, vol. 95, 2015.
  • 25. D. Matika and L. Mihanović, “Reliability of a light high speed marine diesel engine,” Shipbuilding: An International Journal of Research and Development, vol. 62, pp. 28-36, 2011.
  • 26. Life Data Analysis: Weibull Analysis. [Online]. Available: https://www.weibull.com/basics/lifedata.htm. [Accessed: Sept. 12, 2022].
  • 27. 1st Classification Society Event 2017: ME Fundamentals and Critical Principles. [Online]. Available: https://pbm.hr/ media/1100/man-me-hcu.pdf. [Accessed: Sept. 21, 2022].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2faee6e-9132-4465-b83e-5be5862f711f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.