Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Difference in the mechanical properties of bone and stiffer femoral implant causes bone tissue resorption, which may result in implant loosening and periprosthetic fractures. The introduction of porous material reduces the stiffness of the implant. The aim of the study was to analyse the influence of porous shell of femoral revision implant on bone tissue loading distribution with use the finite element method. Design/methodology/approach: Load transfer in the femur has been investigated using the finite element method (Ansys). Cementless implant models were placed in the anatomical femur model. Femur model included sponge bone and cortical bone. The solid implant was compared with the implant containing porous material in 70% in outer layer with a thickness of 2 mm. Load of 1500 N during gait was simulated. In addition, the forces of the ilio-tibial band and the abductor muscles were implemented, as well as the torque acting on the implant. Findings: Increase of stress for the porous model was found. The underload zones in bone have been reduced. Loading distribution was slightly more favourable, albeit rather in cortical bone. Stress value in cancellous bone around cementless implant margin has increased to a level that is dangerous for bone loss. Stress in the implant was not dangerous for damage. The stress distribution was different in the implant neck zone where the porous shell borne a little less load and high stress was shifted to the stiffer core. Research limitations/implications: Variable conditions for fitting the stem to the bone as well as the friction conditions were not investigated. Practical implications: Stress values in the spongy bone around the insertion edge of the cementless implant are consistent with long-term clinical results of the bone atrophy in 1 and 2 Gruen`s zones around the fully porous implants. Originality/value: The advantage of fully porous coated implant was the decrease of risk of trabecular bone tissue resorption around the implant tip and the increase of risk of trabecular bone tissue resorption around insertion edge of the implant.
Wydawca
Rocznik
Tom
Strony
77--84
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Absolvent of Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Individual Dental Practice, ul. Rożanowicza 13/7, 40-148 Katowice, Poland
Bibliografia
- [1] A. Glassman, J. Bobyn, M. Tanzer, New Femoral Designs Do They Influence Stress Shielding?, Clinical Orthopaedics and Related Research 453 (2006) 64-74.
- [2] J. Bobyn, E. Mortimer, A. Glassman, C.A. Engh, J.E. Miller, C.E. Brooks, Producing and avoiding stress shielding: laboratory and clinical observations of noncemented total hip arthroplasty, Clinical Orthopaedics and Related Research 274 (1992) 79-96.
- [3] A. Chamay, P. Tschantz, Mechanical influences in bone remodeling. Experimental research on Wolff’s law, Journal of Biomechanics 5 (1972) 173-180.
- [4] W.D. Bugbee, W.J. Culpepper 2nd, C.A. Engh Jr., C.A. Engh Sr., Long-Term Clinical Consequences of Stress-Shielding after Total Hip Arthroplasty without Cement, The Journal of Bone& Joint Surgery 79 (1997) 1007-1012.
- [5] C.A. Engh Jr., A.M. Young, C.A. Engh Sr., R.H. Hooper Jr., Clinical consequences of stress shielding after porous-coated total hip arthroplaty, Clinical Orthopaedics and Related Research 417 (2003) 157-163.
- [6] J.P. McAuley, W.J. Culpepper, C.A. Engh, Total hip arthroplasty: Concerns with extensively porous coated femoral components, Clinical Orthopaedics and Related Research 355 (1998) 182-188.
- [7] P.R. Fernandes, R.B. Ruben, J. Folgado, Bone Implant Design Using Optimization Methods. Biomechanics of Hard Tissues, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 267-296.
- [8] Y.-H. Kim, J.-S. Kim, S.-H. Cho, Strain distribution in the proximal human femur, Bone& Joint Journal 83 (2001) 295-301.
- [9] T. Niinimӓki, J. Junila, P. Jalovaara, A proximal fixed anatomic femoral stem reduces stress shielding, International Orthopaedics 25 (2001) 85-88.
- [10] T. Renkawitz, F.S. Santori, J. Grifka, C. Valverde, M.M. Morlock, I.D. Learmonth, A new short uncemented, proximally fixed anatomic femoral implant with a prominent lateral flare: design rationals and study design of an international clinical trial, BMC Musculoskeletal Disorders 9 (2008) 147, DOI: 10.1186/1471-2474-9-147.
- [11] J. Schmidt, M. Hackenbroch, The Cenos hollow stem in total hip arthroplasty: first experiences in a prospective study, Archives of Orthopaedic and Trauma Surgery 113 (1994) 117-120.
- [12] R. Crowninshield, R. Brand, R. Johnston, J.C. Milroy, An analysis of femoral component stem design in total hip arthroplasty, The Journal of Bone & Joint Surgery 62 (1980) 68-78.
- [13] B. Behrens,C. Wirth, H. Windhagen, I. Nolte, A. Meyer-Lindenberg, A. Bouguecha, Numerical investigations of stress shielding in total hip prostheses, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 222 (2008) 593-600.
- [14] C. Mattheck, U. Vorberg, C. Kranz, Effects of hollow shaft endoprosthesis on stress distribution in cortical bone, Biomedizinische Technik. Biomedical Engineering 35 (1990) 316-319 (in German).
- [15] K.B. Hazlehurst, C.J. Wang, M. Stanford, The potential application of a Cobalt Chrome Molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies, Medical Hypotheses 81/6 (2013) 1096-1099, DOI: https://doi.org/10.1016/j.mehy.2013.10.012.
- [16] K.B. Hazlehurst, C.J. Wang, M. Stanford, A numerical investigation into the influence of the properties of cobalt chrome cellular structures on the load transfer to the periprosthetic femur following total hip arthroplasty, Medical Engineering &Physics 36/4 (2014) 458-466, DOI: https://doi.org/10.1016/j.medengphy.2014.02.008.
- [17] L. Murr, S. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, J. Bracke, Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philisophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science 368 (2010) 1999-2032, DOI: 10.1098/rsta.2010.0010.
- [18] D.J. Marcellin-Little, O. Cansizoglu, O.L. Harrysson, S.C. Roe, In vitro evaluation of a lowmodulus mesh canine prosthetic hip stem, American Journal of Veterinary Research 71/9 (2010) 1089-1095, DOI: 10.2460/ajvr.71.9.1089.
- [19] S. Arabnejad Khanoki, D. Pasini, Multiscale Design and Multiobjective Optimization of Orthopedic Hip Implants with Functionally Graded Cellular Material, Journal of Biomechanical Engineering134/3 (2012) 031004, DOI: 10.1115/1.4006115.
- [20] S. Arabnejad Khanoki, D. Pasini, The Fatigue Design of a Bone Preserving Hip Implant With Functionally Graded Cellular Material, Journal of Medical Devices7/2 (2013) 020907, DOI: 10.1115/1.4024310.
- [21] N. Harrison, P. McHugh, W. Curtin, P. McDonnell, Micromotion and friction evaluation of a novel surface architecture for improved primary fixation of cementless orthopaedic inplants, Journal of the Mechanical Behavior of Biomedical Materials 21 (2013) 020907, DOI: 10.1115/1.4024310.
- [22] E. Marin, S. Fusi, M. Pressacco, L. Paussa, L. Fedrizzi, Chatacterization of cellular solids in Ti6Al4V for orthopaedic implant applications: Trabecular titanium, Journal of the Mechanical Behavior of Biomedical Materials 3/5 (2010) 373-381, DOI: https://doi.org/10.1016/j.jmbbm.2010.02.001.
- [23] M. Matsui, K. Nakata, K. Masuhara, K. Ohzono, N. Sugano, T. Ochi, The Metal-Cancellous Cementless Lübeck total hip arthroplasty. Five-to-nine-year results, The Journal of Bone and Joint Surgery(Br.) 80/3 (1998) 404-410.
- [24] L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Materials Science and Technology 28/1 (2012) 1-14, DOI: https://doi.org/10.1016/S1005-0302(12)60016-4.
- [25] C. Simoueau, V. Brailovski, P. Terriault, Design, manufacture and tensile properties of stochastic porous metallic structures, Mechanics of Materials 94 (2016) 26-37, DOI, https://doi.org/10.1016/j.mechmat.2015.11.010.
- [26] S.M. Thompson, D. Yohuno, W.N. Bradley, A.D. Crocombe, Finite element analysis: a comparison of an all-polyethylene tibial implant and its metal-backed equivalent, Knee Surgery, Sports Traumatology, Arthroscopy: Official Journal of the ESSKA 24/8 (2016) 2560-2566, DOI: 10.1007/s00167-015-3923-y.
- [27] https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_thry/thy_tool16.html/, Accessed at: 14.12.2018
- [28] G. Bergmann, A. Bender, J. Dymke, G. Duda, P. Damm, Standardized loads Acting in Hip Implants, PLoS ONE 11/5 (2016) e0155612, DOI: https://doi.org/10.1371/journal.pone.0155612.
- [29] G. Bergmann, F. Graichen, A. Rohlmann, A. Bender, A. Heinlen, G.N. Duda, M.O. Heller, M.M. Morlock, Realistic loads for testing hip implants, Bio-medical Materials and Engineering20/2 (2010) 65-67, DOI: 10.3233/BME-2010-0616.
- [30] H. El-Shiekh, Finite Element Simulation of Hip Joint Replacement under Static and Dynamic Loading, School of Mechanical and Manufacturing Engineering, Dublin City University, 2002, 128.
- [31] S. Arabnejad, B. Johnston, M. Tanzer, D. Pasini, Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty, Journal of Orthopaedic Research 35/8 (2017) 1774-1783, DOI: https://doi.org/10.1002/jor.23445.
- [32] C. Götze, A. Tschugunow, H. Götze, Long-term results of the metal-cencellous cementless Lübeck total hip arthroplasty: a critical review at 12.8 years, Archives of Orthopaedic and Trauma Surgery 126/1 (2006) 28-35, DOI: https://doi.org/10.1007/s00402-005-0064-7.
- [33] C. Rivière, G. Grappiolo, C.A. Engh Jr., J-P. Vidalain, A-F. Chen, N. Boehler, J. Matta, P-A. Vendittoli, Long-term bone remodeling around ‘legendary’ cementless femoral stems, EFORT Open Review 3/2 (2018) 45-57, DOI: https://doi.org/10.1302/2058-5241.3.170024.
- [34] V.I. Sakellariou, G.C. Babis, Management bone loss of the proximal femur in revision hip arthroplasty: Update on reconstructive options, World Journal of Orthopedics 5/5 (2014) 614-622, DOI: https://doi.org/10.5312/wjo.v5.i5.614.
- [35] R.H. Emerson Jr., W.C. Head, L.L. Higgins, Clinical and radiographic analysis of the Mallory-Head femoral component in revision total hip arthroplasty. A minimum 8.8-year and average eleven-year follow-up study, The Journal of Bone and Joint Surgery (Am.) 85-A/10 (2003) 1921-1926.
- [36] B. Ellison, N.A. Cheney, K.R. Berend, A.V. Lombardi Jr., T.H. Mallory, Minimal stress shielding with a Mallory-Head titanium femoral stem with proximal porous coating in total hip arthroplasty, Journal of Orthopaedic Surgery and Research 9/4 (2009) 42, DOI: https://doi.orh/10.1186/1749-799X-4-42.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2f862cd-eddf-4f6f-9a2b-3f325e86f350