PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Certain Ballistic Performance and Thermal Properties Evaluation for Extruded Modified Double-base Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main advantages of modified double-base (MDB) propellants are wide range of burning rates, high energy output, as well as enhanced thrust. This study reports on the effect of potential oxidizers − potassium perchlorate (KP) or ammonium perchlorate (AP), stoichiometric binary mixture of the oxidizer (KP or AP) with metal fuel (Al), and energetic nitramine (HMX) on combustion characteristics of MDB propellants. MDB propellant formulations based on these additives, constituting 10 wt.% of total mass of the MDB formulation, were manufactured by solventless extrusion process. The impact of these additives on ballistic performance particularly the burning rate as well as on the characteristic exhaust velocity of gaseous product (C*), was evaluated using small-scale ballistic evaluation test motor. KP and AP exhibit different effects; KP positively impacts the burning rate, AP positively impacts C*. Stoichiometric binary mixture of AP/Al positively impacts both the burning rate and C*; HMX substantially enhances C*. These energetic additives could alter the combustion mechanism, by thinning the induction zone, allowing the luminous flame zone to be more adjacent to the burning surface. Therefore, the combustion reaction could proceed faster. The developed MDB propellant formulations were found to be more energetic with an increase in calorific value in comparison to reference formulation (using bomb calorimeter); they exhibited similar ignition temperature by means of cook off test. DSC measurements demonstrated similar onset and maximum decomposition temperature of developed MDB propellant formulations to reference DB propellant formulation but with an increase in total heat released (J/g).
Rocznik
Strony
621--635
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering, Military Technical College, Kobry El-Kobba, Cairo, Egypt
  • School of Chemical Engineering, Military Technical College, Kobry El-Kobba, Cairo, Egypt
autor
Bibliografia
  • [1] Sun, Ch.; Xu, J.; Chen, X.; Zheng, J.; Zheng, Y.; Wang, W. Strain Rate and Temperature Dependence of the Compressive Behavior of a Composite Modified Double-base Propellant. Mech. Mater. 2015, 89: 35-46.
  • [2] Wu, X. G.; Yan, Q. L.; Guo, X.; Qi, X. F.; Li, X. J.; Wang, K. Q. Combustion Efficiency and Pyrochemical Properties of Micron-sized Metal Particles as the Components of Modified Double-base Propellant. Acta Astronaut. 2011, 68: 1098-1112.
  • [3] Yan, Q. L.; Song, Z. W.; Shi, X. B. Combustion Mechanism of Double-base Propellant Containing Nitrogen Heterocyclic Nitroamines (I): The Effect of Heat and Mass Transfer to the Burning Characteristics. Combust. Flame 2009, 156: 633-641.
  • [4] Meda, G.; Braglia, R.; Abis, L.; Gallo, R.; Severini, F.; Galfetti, L.; DeLuca, L. T. A Wide Characterization of Aluminum Powders for Propellants. Proc. 9-IWCP, Novel Energetic Materials and Applications, November 2004.
  • [5] Richard, G.; Yetter, A.; Son, F. Metal Particle Combustion and Nanotechnology. Proc. Combustion Institute, 32, 2009.
  • [6] Han, W.; Han, D.; Li, S.; Zhao, F.; Zhang, L. RDX/AP-CMDB Propellants Containing Fullerenes and Carbon Black Additives. Def. Sci. J. 2009, 9: 59-284.
  • [7] Conkling, J. A.; Mocella, J. Chemistry of Pyrotechnics, Basic Principles and Theory. CRC Press, 2nd ed., 2010, pp. 60-96; ISBN 9781574447408.
  • [8] Solid Rocket Propulsion Technology. (Davenas, A., Ed.), Pergamon Press, Oxford 2012, Ch. 12.
  • [9] Kakami, A.; Tachibana, T. Heat Balance Evaluation of Double-base Solid Propellant Combustion Using Thermography and Laser Heating on a Burning Surface. Aerospace Science and Technology 2015, 47: 86-91.
  • [10] Venugopalan, S. The Propulsive Facet of High Energy Materials II (Rocket Propellants), Ch. 6, in: Demystifying Explosives. Elsevier, 2015, pp. 133-155.
  • [11] Sutton, G.; Biblarz, O. Rocket Propulsion Elements. John Wiley & Sons, New York 2001, pp. 474-485; ISBN 978-0470080245.
  • [12] Kalaycioglu, B. An Elasto-viscoplastic Analysis of Direct Extrusion of a Double Base Solid Propellant. Advances in Engineering Software 2010, 41: 1110-1114.
  • [13] Hayri Yaman, V.; Degirmenci, E. Experimental Investigation of the Factors Affecting the Burning Rate of Solid Rocket Propellants. Fuel 2014, 115: 794-803.
  • [14] Aoki, I. Combustion Wave Structure of High and Low Energy Double-Base Propellants. AIAA 1982, 20: 100-105.
  • [15] Kubota, N. Propellants and Explosives: Thermochemical Aspects of Combustion. Wiley-VCH, 2002, 15: 123-156; 560; ISBN 3-527-30210-7.
  • [16] Kubota, N. Propellants and Explosives: Thermochemical Aspects of Combustion. Wiley-VCH, 2002, 15: 59-97; ISBN 3-527-30210-7.
  • [17] Yaman, A.; Çelik, V. Investigation of the Effects of Metallic Additives on the Performance of Solid Propellant. 11th International Symposium on Combustion, 2010.
  • [18] Bhat, V. Burning Rate Studies of Energetic Double Base Propellants. Def. Sci. J. 1986, 36: 5-12.
  • [19] Anderson, Z. HMX and RDX: Combustion Mechanism and Influence on Modern Double-Base Propellant Combustion. J. Propul. Power 1995, 42: 25-37.
  • [20] Mcava, A. Engineering Design Handbook. Military Pyrotechnics Series, Part 3: Properties of Materials Used in Pyrotechnic Compositions. Defense Technical Information Center, 1963.
  • [21] Conklind, J.; Mocella, C.. Chemistry of Pyrotechnics Basic Principles and Theory. CRC, London 2012, 9: 59-95; ISBN 978-1574447408.
  • [22] Shimizu, T. Fireworks: The Art, Science, and Technique. Pyrotechnica Publications, 1996.
  • [23] Mcava, A. Engineering Design Handbook, Military Pyrotechnics Series, Part 1: Properties of Materials Used in Pyrotechnic Compositions. Defense Technical Information Center, 1963.
  • [24] Agrawal, J. High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley 2010; ISBN 978-3-527-32610-5.
  • [25] Conkling, J. A.; Mocella, A. Chemistry of Pyrotechnics, Basic Principles and Theory, 2010, 2: 41-87; ISBN 9781574447408.
  • [26] Jain, S. Evaluation of Potassium Perchlorate as a Burning Rate Modifier in Composite Propellant Formulations. Cent. Eur. J. Energ. Mater. 2016, 13: 15.
  • [27] Li, X.; Liu, X.; Cheng, Y.; Li, Y.; Mei, X. Thermal Decomposition Properties of Double-base Propellant and Ammonium Perchlorate. J. Therm. Anal. Calorim. 2014, 115(1): 887-894.
  • [28] Bhat, H.; Khare, R.; Rao, K. Burning Rate Studies of Energetic Double Base Propellants. Def. Sci. J. 1986, 36: 1.
  • [29] Meyer, J.; Homburg, A. Explosives. 6th ed., Wiley-VCH, Weinheim 2007, Ch. 5, pp. 11-24; ISBN: 978-3-527-31656-4.
  • [30] Leili, F.; Linghua, T.; Ming, L.; Yang, Y. Effects of Nanometer Ni, Cu, Al and NiCu Powders on the Thermal Decomposition of Ammonium Perchlorate. Propellants Explos. Pyrotech. 2004, (1): 23-41.
  • [31] Gautarn, S.; Joshi, A.; Mulage, K.; Singh, S. Study of Energetic Nitramine Extruded Double-base Propellants. Def. Sci. J. 1998, 148: 2.
  • [32] Mohamed, A. Nanoscopic Fuel-rich Thermobaric Formulations: Chemical Composition Optimization and Sustained Secondary Combustion Shock Wave Modulation. J. Hazard. Mater. 2016, 301: 492-503.
  • [33] Balbudhe, K. Computer Modelling of Nano-aluminium Agglomeration During the Combustion of Composite Solid Propellants. Proceedings of the Combustion Institute. 2015, 35: 2471-2478.
  • [34] Doisneau, F. Eulerian Multi-fluid Models for the Simulation of Dynamics and Coalescence of Particles in Solid Propellant Combustion. J. Comput. Phys. 2013, 234: 230-262.
  • [35] Yaman, H.; Celik, V.; Degirmenci, E. Experimental Investigation of the Factors Affecting the Burning Rate of Solid Rocket Propellants. Fuel 2014, 115: 794-803.
  • [36] Chan, M. L.; Meyers, G. W. Advanced Thermobaric Explosive Compositions. Patent US 6955731, 2005.
  • [37] Talawar, M. Emerging Trends in Advanced High Energy Materials. Combust., Explos. Shock Waves (Engl. Transl.) 2007, 43: 62-72.
  • [38] Meyer, R. Explosives. Wiley, Weinheim 2007, 3: 237-239; ISBN 9783527316564.
  • [39] Lewis, T. The Effect of Processing Variations on the Ballistics of Fast Burning Extruded Double Base Propellants. AIAA 14th Joint Propulsion Conference, 1978.
  • [40] Fry, L.; Frederick, R.; Gadiot, G.; Strecker, R. Evaluation of Methods for Solid Propellant Burning Rate Measurement. Defense Technical Information Center (DTIC) Document, 2002.
  • [41] Yen, N.; Wang, L. Y. Reactive Metals in Explosives. Propellants Explos. Pyrotech. 2012, 37: 143-155.
  • [42] Zarko, V.; Gromov, A. Energetic Nanomaterials. Synthesis, Characterization, and Application. Elsevier, Amsterdam 2016; ISBN 9780128027103.
  • [43] Kubota, N. Propellants and Explosives: Thermochemical Aspects of Combustion. Wiley-VCH, 2002, 4: 31-54.
  • [44] Nobelkrut, B. Analytical Methods for Powders and Explosives. Sweden 1974.
  • [45] Djalal Trache, A. Study on the Influence of Ageing on Thermal Decomposition of Double-base Propellants and Prediction of Their In-use Time. Fire and Materials 2013, 37: 328-336.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2f593fa-f17f-4846-a92f-04bd830df704
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.