PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear solution to a non-Fourier heat conduction problem in a slab heated by laser source

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nieliniowe rozwiązanie problemu niefourierowskiego przewodzenia ciepła w płycie nagrzewanej źródłem laserowym
Języki publikacji
EN
Abstrakty
EN
The effect of laser, as a heat source, on a one-dimensional finite body was studied in this paper. The Cattaneo-Vernotte non-Fourier heat conduction model was used for thermal analysis. The thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The obtained equations were solved using the approximate-analytical Adomian Decomposition Method (ADM). It was concluded that the non-linear analysis is important in non-Fourier heat conduction problems. Significant differences were observed between the Fourier and non-Fourier solutions which stresses the importance of non-Fourier solutions in the similar problems.
PL
W artykule badano działanie laserowego źródła ciepła na ciało jednowymiarowe o skończonych wymiarach. Do analizy rozkładu temperatury zastosowano niefourierowski model przewodnictwa ciepła Cattaneo-Vernotte. Założono, że przewodność cieplna jest zależna od temperatury, w wyniku czego otrzymano równania nieliniowe. Do rozwiązania równań zastosowano przybliżoną analityczną metodę dekompozycji Adomiana (ADM). Stwierdzono, że analiza nieliniowa ma istotne znaczenie w problemach przewodnictwa ciepła typu niefourierowskiego. Zaobserwowano istotne różnice między rozwiązaniami fourierowskimi i niefourierowskimi, co podkreśla celowość stosowania tych ostatnich w podobnych problemach.
Rocznik
Strony
129--144
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Young Researchers and Elite Club, Malayer Branch, Islamic Azad University, Malayer, Iran
autor
  • Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
autor
  • Department of Mechanical Engineering, Babol University of Technology, Babol, Iran
Bibliografia
  • [1] Özişik M.N., Tzou D.Y.: On the Wave Theory in Heat Conduction. J. Heat Transfer, 1994, Vol. 116, No. 3, pp. 526-535.
  • [2] Tang D.W., Araki N.: Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. Int. J. Heat Mass Transf., 1999, Vol. 42, No. 5, pp. 855-860.
  • [3] Wang X., Xu X.: Thermoelastic wave in metal induced by ultrafast laser pulses. J. Therm. Stress., 2002, Vol. 25, No. 5, pp. 457-473.
  • [4] Tung M.M., Trujillo M., López Molina J., Rivera M.J., Berjano E.J.: Modeling the heating of biological tissue based on the hyperbolic heat transfer equation. Math. Comput. Model., 2009, Vol. 50, No. 5-6, pp. 665-672.
  • [5] Peshkov V.: Second Sound in Helium II. J. Physics, USSR, 1944, Vol. 3, p. 381.
  • [6] Shirmohammadi R.: Thermal Response of Microparticles Due to Laser Pulse Heating. Nanoscale Microscale Thermophys. Eng., 2011, Vol. 15, No. 3, pp. 151-164.
  • [7] Guyer R.A., Krumhansl J.A.: Solution of the Linearized Phonon Boltzmann Equation. Phys. Rev., Aug. 1966, Vol. 148, No. 2, pp. 766-778.
  • [8] Catteneo C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comput. rendus, 1958, Vol. 247, pp. 431-433.
  • [9] Vernotte P.: Some possible complications in the phenomenon of thermal conduction Comput. rendus, 1961, Vol. 247, pp. 2190-2191.
  • [10] Tzou D.Y.: A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales. J. Heat Transfer, 1995, Vol. 117, No. 1, pp. 8-16.
  • [11] Bargmann S. Favata A.: Continuum mechanical modeling of laser-pulsed heating in polycrystals: A multi-physics problem of coupling diffusion, mechanics, and thermal waves. ZAMM – J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech., 2014, Vol. 94, No. 6, pp. 487-498.
  • [12] Sasmal A., Mishra S.C.: Analysis of non-Fourier conduction and radiation in a differentially heated 2-D square cavity. Int. J. Heat Mass Transf., 2014, Vol. 79, pp. 116-125.
  • [13] Rahbari I., Mortazavi F., Rahimian M.H.: High order numerical simulation of non-Fourier heat conduction: An application of numerical Laplace transform inversion. Int. Commun. Heat Mass Transf., 2014, Vol. 51, pp. 51-58.
  • [14] Zhao W.T., Wu J.H., Chen Z.: Analysis of non-Fourier heat conduction in a solid sphere under arbitrary surface temperature change. Arch. Appl. Mech., 2014, Vol. 84, No. 4, pp. 505-518.
  • [15] Mishra S.C., Sahai H.: Analysis of non-Fourier conduction and volumetric radiation in a concentric spherical shell using lattice Boltzmann method and finite volume method. HEAT MASS Transf., 2014, Vol. 68, pp. 51-66.
  • [16] Fong E., Lam T.T.: Asymmetrical collision of thermal waves in thin films: An analytical solution. Int. J. Therm. Sci., 2014, Vol. 77, pp. 55-65.
  • [17] Adomian G.: Stochastic Systems. New York, Academic Press, 1983.
  • [18] He J.: An approximate solution technique depending on an artificial parameter: A special example. Commun. Nonlinear Sci. Numer. Simul., 1998, Vol. 3, No. 2, pp. 92-97.
  • [19] He J.: Newton-like iteration method for solving algebraic equations. Commun. Nonlinear Sci. Numer. Simul., 1998, Vol. 3, No. 2, pp. 106-109.
  • [20] Liao S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Tong University, 1992.
  • [21] Zhou J.K.: Differential Transform and Its Applications for Electrical Circuits. Huarjung University Press, 1986.
  • [22] He J.: Variational iteration method – a kind of non-linear analytical technique: some examples. 1999, Vol. 34, pp. 699-708.
  • [23] Singla R.K., Das R.: Adomian decomposition method for a stepped fin with all temperature-dependent modes of heat transfer. Int. J. Heat Mass Transf., 2015, Vol. 82, No. 0, pp. 447-459.
  • [24] Duan J.-S., Rach R., Wazwaz A.-M.: Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the Adomian decomposition method. 2014, J. Math. Chem., pp. 1-14.
  • [25] Liu A.-J., Zheng L.-C., Ma L.-X, Zhang X.-X.: Analytical Solutions of a Model for Brownian Motion in the Double Well Potential. Commun. Theor. Phys., 2015, Vol. 63, No. 1, p. 51-56.
  • [26] Praveen T., Rajendran L.: Theoretical analysis through mathematical modeling of two-phase flow transport in an immobilized-cell photobioreactor. Chem. Phys. Lett., 2015, Vol. 625, pp. 193-201.
  • [27] Fatoorehchi H., Abolghasemi H., Zarghami R.: Analytical approximate solutions for a general nonlinear resistor-nonlinear capacitor circuit model. Appl. Math. Model., 2015, Vol. 39, No. 19, pp. 6021-6031.
  • [28] Bég O.A., Tripathi D., Sochi T., Gupta P.K.: Adomian Decomposition Method (ADM) simulation of magneto-bio-tribological squeeze film with magnetic induction effects. J. Mech. Med. Biol., 2015, Vol. 15, No. 5, p. 1550072.
  • [29] Torabi M., Yaghoobi H., Saedodin S.: Assessment of homotopy perturbation method in nonlinear convective-radiative non-Fourier conduction. Therm. Sci., 2011, Vol. 15, pp. 263-274.
  • [30] Saedodin S., Yaghoobi H., and Torabi M.: Application of the variational iteration method to nonlinear non-Fourier conduction heat transfer equation with variable coefficient. 2011, Vol. 40, No. 6, pp. 513-523.
  • [31] Torabi M., Yaghoobi H., Boubaker K.: Thermal Analysis of Non-linear Convective – Radiative Hyperbolic Lumped Systems with Simultaneous Variation of Temperature-Dependent Specific Heat and Surface Emissivity by MsDTM and BPES. Int. J. Thermophys., 2013, Vol. 34, No. 1, pp. 122-138.
  • [32] Srivastava V.: Dual-phase-lag heat equation of fractional order of heat transfer within microscale region. World J. Model. Simul., 2013, Vol. 9, No. 3, pp. 216-222.
  • [33] Yilbas B.S.: A closed form solution for temperature rise inside solid substrate due to time exponentially varying pulse. Int. J. Heat Mass Transf., 2002, Vol. 45, No. 9, pp. 1993-2000.
  • [34] Cheung T.-Y.K., Blake B.A., Lam T.T.: Heating of Finite Slabs Subjected to Laser Pulse Irradiation and Convective Cooling. J. Thermophys. Heat Transf., 2007, Vol. 21, No. 2, pp. 239-323.
  • [35] Fong E., Lam T., Davis S.: Heat Transfer in Isotropic and Orthotropic Materials Subjected to Laser Irradiation and Radiative Cooling. 40th Thermophysics Conference, American Institute of Aeronautics and Astronautics, 2008.
  • [36] Lam T.T.: Thermal propagation in solids due to surface laser pulsation and oscillation. Int. J. Therm. Sci., 2010, Vol. 49, No. 9, pp. 1639-1648.
  • [37] Malekzadeh P., Rahideh H.: IDQ two-dimensional nonlinear transient heat transfer analysis of variable section annular fins, Energy Convers. Manag., 2007, Vol. 48, No. 1, pp. 269-276.
  • [38] Biazar J., Islam M.R.: The Adomian Decomposition Method for the solution of the transient energy equation in rocks subjected to laser irradiation. Iran. J. Sci. Technol. Trans. A, 2006, Vol. 30, No. A2, pp. 201-212.
  • [39] García-Olivares A.: Analytic solution of partial differential equations with Adomian’s decomposition, Kybernetes, 2003, Vol. 32, No. 3, pp. 354-368.
  • [40] Lam T.T., Fong E.: Heat diffusion vs . wave propagation in solids subjected to exponentially-decaying heat source: Analytical solution. Int. J. Therm. Sci., 2011, Vol. 50, No. 11, pp. 2104-2116.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2f31c4c-4299-47ad-8acd-2d325a7376f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.