PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-strategy navigation for a mobile data acquisition platform using genetic algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monitoring of biological and chemical pollutants in large bodies of water requires the acquisition of a large number of in-situ measurements by a mobile sensor platform. Critical to this problem is an efficient path planning method, easily adaptable to different control strategies that ensure the collection of data of the greatest value. This paper proposes a deliberative path planning algorithm, which features the use of waypoints for a ship navigation trajectory that are generated by Genetic Algorithm (GA) based procedures. The global search abilities of Genetic Algorithms are combined with the heuristic local search in order to implement a navigation behaviour suitable to the required data collection strategy. The adaptive search system operates on multi-layer maps generated from remote sensing data, and provides the capacity for dealing with multiple classes of water pollutants. A suitable objective function was proposed to handle different sampling strategies for the collection of samples from multiple water pollutant classes. A region-of-interest (ROI) component was introduced to deal effectively with the large scale of search environments by pushing the search towards ROI zones. This resulted in the reduction of the search time and the computing cost, as well as good convergence to an optimal solution. The global path planning performance was further improved by multipoint crossover operators running in each GA generation. The system was developed and tested for inland water monitoring and trajectory planning of a mobile sample acquisition platform using commercially available satellite data.
Twórcy
autor
  • Département d’informatique et d’ingénierie Université du Québec en Outaouais Gatineau, QC, J8X 3X7, Canada
  • Département d’informatique et d’ingénierie Université du Québec en Outaouais Gatineau, QC, J8X 3X7, Canada
Bibliografia
  • [1] K. Alikas, K. Kangro, A. Reinart, “Detecting cyanobacterial looms in large North European lakes using the maximum chlorophyll index”, Oceanologia, vol. 52, no. 2, 2010, 237–257. DOI: 10.5697/oc.52-2.237.
  • [2] I. Châari, A. Koubâa, H. Bennaceur, et al., “On the Adequacy of Tabu Search for Global Robot Path Planning Problem in Grid Environments”. In: 5th Int. Conf. Ambient Syst. Networks Technol. ((ANT-2014), Hasselt, Belgium, 2014, Procedia Computer Science, vol. 32, 2014, 604–613. DOI: 10.1016/j.procs.2014.05.466.
  • [3] I. Châari, A. Koubâa, H. Bennaceur, S. Trigui, K. Al-Shalfan, “SmartPATH: A hybrid ACO-GA algorithm for robot path planning”. In: 2012 IEEE Congr. Evol. Comput. (CEC 2012), Brisbane, Australia, 2012, 1–8. DOI: 10.1109/CEC.2012.6256142.
  • [4] C.T. Cheng, K. Fallahi, H. Leung, C.K. Tse, “A genetic algorithm-inspired UUV path planner based on dynamic programming”, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 6, 2012, 1128–1134. DOI: 10.1109/TSMCC.2011.2180526.
  • [5] C.A. Coello Coello, “Evolutionary Multi-Objective Optimization: A Historical View of the Field”, IEEE Comput. Intell. Mag., vol. 1, no. 1, 2006, 28–36. DOI: 10.1109/MCI.2006.1597059.
  • [6] G. Colmenares, F. Halal, M.B. Zaremba, “Ant Colony Optimization for Data Acquisition Mission Planning”, Manag. Prod. Eng. Rev., vol. 5, no. 2, 2014, 3–11. DOI: 10.2478/mper-2014-0011.
  • [7] H. Ergezer, K. Leblebicio, “3D Path Planning for- Multiple UAVs for Maximum Information Collection”, J. Intell. Robot. Syst., vol. 73, 2014, 737–762. DOI: 0.1007/s10846-013-9895-6.
  • [8] M. Gao, J. Tian, “Path Planning for Mobile Robot Based on Improved Simulated Annealing”. In: 3rd Int. Conf. Nat. Comput., 2007, vol. 3, 8–12. DOI: 10.1109/ICNC.2007.547.
  • [9] A. García, A. Barrientos, “3D Path planning using a fuzzy logic navigational map for Planetary Surface Rovers”. In: ASTRA 2011 11th Symposium on Advanced Space Technologies in Robotics and Automation, 12th–14th April 2011
  • [10] J. Gower, S. King, P. Goncalves, “Global monitoring of plankton blooms using MERIS MCI”, Int. J. Remote Sens., vol. 29, no. 21, 2008, 6209–6216. DOI: 10.1080/01431160802178110.
  • [11] F. Halal, M.B. Zaremba, “Multi-strategy spatial data acquisition missions using genetic algorithms”, IFAC-PapersOnLine, vol. 48, no. 3, 2015, 778–783. DOI: 10.1016/j.ifacol.2015.06.177.
  • [12] J. A. Hambrook Berkman, M.G. Canova, “Algal Biomass Indicators”, U.S. Geol. Surv. TWRI book 9: Biol. Indic., 2007, chapter A.7, section 7.4.
  • [13] R.L. Haupt, S.E. Haupt, Practical Genetic Algorithms, John Wiley & Sons, Inc., Hoboken, New Jersey., 2004.
  • [14] C.-C. Hsu, Y.-C. Liu, “Path planning for robot navigation based on Cooperative Genetic Optimization”.In: Proc. 11th IEEE Int. Conf. Networking, Sens. Control, 2014, 316–321. DOI: 10.1109/ ICNSC.2014.6819645.
  • [15] M.T.S. Ibrahim, S.V. Ragavan, S.G. Ponnambalam, “Way point based deliberative path planner for navigation”, IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM), 2009, 881–886. DOI: 10.1109/AIM.2009.5229900.
  • [16] P. Jaroszek, “Any-angle Global Path Planning for Skid-Steered Mobile Robots on Heterogeneous Terrain”, Journal of Automation, Mobile Robotics, and Intelligent Systems, vol. 10, no. 2, 2016, 50–55. DOI: 10.14313/JAMRIS_2-2016/15.
  • [17] S. Koponen, J. Vepsäläinen, J. Pulliainen, et al., “Using meris data for the retrieval of CHL-A, CDOM and TSS values in the gulf of Finland and lake Lohjanjärvi”, Eur. Sp. Agency, (Special Publ. ESA SP. 2004, 2005, 407–413.
  • [18] B. Li, R. Chiong, L. Gong, “Search-evasion path planning for submarines using the Artificial Bee Colony algorithm”. In: 2014 IEEE Congr. Evol.Comput., July 2014, 528–535. DOI: 10.1109/CEC.2014.6900224.
  • [19] N.K. Lincoln, S.M. Veres, L.A. Dennis, M. Fisher, A. Lisitsa, “Autonomous asteroid exploration by rational agents”, IEEE Comput. Intell. Mag., vol. 8, no. 4, 2013, 25–38. DOI: 10.1109/MCI.2013.2279559.
  • [20] C. Luo, S.X. Yang, M. Krishnan, M. Paulik, Y. Chen, “A hybrid system for multi-goal navigation and map building of an autonomous vehicle in unknown environments”. In: 2013 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2013, 1228–1233.
  • [21] J.E. O’Reilly, S. Maritorena, B.G. Mitchell, et al., “Ocean color chlorophyll algorithms for Sea-WiFS”, J. Geophys. Res., 103, 1998, 24937–24953.
  • [22] S. Park, J. Cho, “ROI-based visualization of spatial information for a remote-controlled robot”. In: 2013 10th Int. Conf. Ubiquitous Robot. Ambient Intell., 2013, 234–235.
  • [23] G.P. Rajappa, Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization, University of Tennessee, 2012.
  • [24] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, Springer-Verlag Berlin, Heidelberg, 2006.
  • [25] M. Samadi, M.F. Othman, “Global Path Planning for Autonomous Mobile Robot Using Genetic Algorithm”. In: 2013 Int. Conf. Signal-Image Technol. Internet-Based Syst., 726–730. DOI: 10.1109/SITIS.2013.118.
  • [26] A. Singh, A. Krause, C. Guestrin, W.J. Kaiser, “Efficient informative sensing using multiple robots”, J. Artif. Intell. Res., vol. 34, 2009, 707–755. DOI: 10.1613/jair.2674.
  • [27] T.Y. Sun, C.L. Huo, S.J. Tsai, Y.H. Yu, C.C. Liu, “Intelligent flight task algorithm for unmanned aerial vehicle”, Expert Syst. Appl., vol. 38, no. 8,2011, 10036–10048. DOI: 10.1016/j.eswa.2011.02.013.
  • [28] Tomasz Gawron, Maciej M. Michalek, “Planning the Waypoint-Following Task for A Unicyclelike robot in Cluttered Environments, Journal of Automation, Mobile Robotics, and Intelligent Systems, vol. 9, no. 1, 2015, 77–90. DOI: 10.14313/JAMRIS_1-2015/10.
  • [29] G. Vachtsevanos, L. Tang, G. Drozeski, L. Gutierrez, “From mission planning to flight control of unmanned aerial vehicles: Strategies and implementation tools”, Annu. Rev. Control., vol. 29, no. 1, 2005, 101–115. DOI: 10.1016/j.arcontrol. 2004.11.002.
  • [30] S. Veera Ragavan, S.G. Ponnambalam, C. Sumero, “Waypoint-based path planner for mobile robot navigation using PSO and GA-AIS”. In: 2011 IEEE Recent Adv. Intell. Comput. Syst. (RAICS 2011), 756–760. DOI: 10.1109/RAICS.2011.6069411.
  • [31] J. Xiao-Ting, X. Hai-Bin, Z. Li, J. Sheng-De, “Flight Path Planning Based on an Improved Genetic Algorithm”. In: 2013 Third Int. Conf. Intell. Syst. Des. Eng. Appl., 775–778.
  • [32] M. Yoshikawa, H. Terai, “Car Navigation System Based on Hybrid Genetic Algorithm”. In: World Congr. Comput. Sci. Inf. Eng., vol. 5, 2009, 60–64.
  • [33] L. Yu, Z. Cai, “Robot exploration mission planning based on heterogeneous interactive cultural hybrid algorithm”. In: 5th Int. Conf. Nat. Comput. ICNC 2009, 583–587.
  • [34] S.C. Yun, V. Ganapathy, L.O. Chong, “Improved Genetic Algorithms based Optimum Path Planning for Mobile Robot”. In: 11th Int. Conf. Control. Autom. Robot. Vis., Singapore, 2010, 1565–1570. DOI: 10.1109/ICNC.2009.15.
  • [35] C. Zeng, Q. Zhang, X. Wei, “Robotic global pathplanning based modified genetic algorithm and A* algorithm”. In: 3rd Int. Conf. Meas. Technol. Mechatronics Autom. ICMTMA 2011, 167–170. DOI: 10.1109/ICMTMA.2011.613.
  • [36] F. Zhang, N.E. Leonard, “Generating contour plots using multiple sensor platforms”. In: Proc. IEEE Swarm Intelligence Symposium, 2005, 309–316.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2eeee8a-85f3-4081-bc61-0e3fb98c12dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.