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Abstract:
Monitoring of biological and chemical pollutants in large 
bodies of water requires the acquisition of a large num-
ber of in-situ measurements by a mobile sensor platform. 
Critical to this problem is an efficient path planning meth-
od, easily adaptable to different control strategies that 
ensure the collection of data of the greatest value. This 
paper proposes a deliberative path planning algorithm, 
which features the use of waypoints for a ship navigation 
trajectory that are generated by Genetic Algorithm (GA) 
based procedures. The global search abilities of Genetic 
Algorithms are combined with the heuristic local search 
in order to implement a navigation behaviour suitable 
to the required data collection strategy. The adaptive 
search system operates on multi-layer maps generated 
from remote sensing data, and provides the capacity 
for dealing with multiple classes of water pollutants. A 
suitable objective function was proposed to handle dif-
ferent sampling strategies for the collection of samples 
from multiple water pollutant classes. A region-of-inter-
est (ROI) component was introduced to deal effectively 
with the large scale of search environments by pushing 
the search towards ROI zones. This resulted in the reduc-
tion of the search time and the computing cost, as well as 
good convergence to an optimal solution. The global path 
planning performance was further improved by multi-
point crossover operators running in each GA generation. 
The system was developed and tested for inland water 
monitoring and trajectory planning of a mobile sample 
acquisition platform using commercially available satel-
lite data.

Keywords: genetic algorithms, path planning, monitor-
ing system, remote sensing, navigation control, heuristic 
search

1. Introduction
Acquisition of a large number of in-situ measure-

ments by a mobile platform is a basic task in the pro-
cess of monitoring biological and chemical pollutants 
in large bodies of water. Monitoring of environmental 
phenomena in inland waters requires measuring a va-
riety of physical processes, such as nutrient concen-
tration, wind effects, and solar radiation [26]. Remote 
sensing (RS) techniques provide significant advan-
tages in terms of spatial and temporal coverage and 
cost-efficiency. The maps of large environment areas 
are often obtained through the processing of satellite 

imagery. The multi-spectral data can subsequently be 
used to obtain models of water pollutants, such as the 
concentration of chlorophyll (Chl-a) or total suspend-
ed sediments (TSS) [17], by applying such measures 
as the maximum chlorophyll index (MCI) [10] or the 
ocean chlorophyll 4 algorithm (OC4v4) [21]. In many 
situations the remote sensing data have to be aug-
mented and updated by in situ measurements. This is 
due to the need for precise local measurements, for 
the calibration of satellite imagery in varying water 
conditions, and for the purpose of precise local deci-
sion making.

Critical to this sample acquisition problem is an 
efficient path planning method, easily adaptable to 
different control strategies that ensure the collection 
of data of the greatest value. Acquisition of different 
types of samples may require appropriate behaviours 
that implement different collection strategies. De-
signing a multi behaviour search system for a mobile 
sample acquisition platform requires answering the 
following questions. Which is the suitable navigation 
mode for a specific water pollutant? How to compute 
the cost of the solution? How can the solution of the 
path planning problem deal with multiple patches of 
high concentration of the pollutant?

In general, the path planning procedure designs 
a trajectory that visits a given set of points such that 
the optimisation process minimises the total travel 
distance. This task can be defined in terms of a combi-
natorial optimization problem with a globally optimal 
solution that satisfies all hard and soft constraints. 
The optimal solution or a set of globally optimal so-
lutions minimises or maximises the objective func-
tion. The path finding problem is typically defined in 
terms of the Travelling Salesman Problem (TSP) [7] 
or a more general Vehicle Routing Problem (VRP) 
[4]. Determining the optimal solution is an NP-hard 
problem, so the size of problems that can be solved 
optimally is limited [3]. In the situation of environ-
ment monitoring systems, the problem is even more 
complex because exact positions of the sampling 
points are not known a priori. In practice, therefore, 
solutions to optimal path planning problems have to 
incorporate heuristic methods.

A variety of heuristic methods have been investi-
gated. Evolutionary algorithms have been employed 
in many variants. In [6] an ant colony optimization 
system was presented to solve the problem of design-
ing an optimal trajectory for a mobile data acquisition 
platform. Luo et al. [20]an intelligent mobile vehicle is 
required to reach multiple goals with a shortest path 
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that, in this paper, is capable of being implemented 
in TSP (Traveling Salesman Problem proposed a hy-
brid GA and D* algorithm for real-time map building 
and navigation for multiple goals purpose. Yoshikawa 
and Terai [32] proposed a car navigation system us-
ing hybrid genetic algorithms and D algorithm. Their 
system finds a route which has several passing points 
before arriving at the final destination. In [18] the 
path planning problem for a submarine navigation 
application was solved using the artificial bee colony 
algorithm. The use of a cultural hybrid algorithm to 
solve the mission planning was reported in [33]. An 
improved simulated annealing artificial network to 
plan the path for a mobile robot was employed in [8]. 

Genetic algorithms have been frequently used in 
NP-hard problems due to their flexibility and high 
quality of the search results [25]. They can provide 
a solution without any advance knowledge about the 
environment, and are largely unconstrained by the 
limitations of the classical search methods [24]. By 
mimicking natural evolution processes, they have the 
ability to adaptively search large spaces in near-opti-
mal ways. In practical terms, GA methods are easy to 
interface with simulation models. An important fea-
ture that should be considered in implementing GA 
techniques is that they are problem specific. Due to 
the constraints of a particular problem and the opera-
tion of crossover and mutation mechanisms, feasible 
offsprings often cannot be obtained by applying exclu-
sively genetic algorithms. In order to ensure the fea-
sibility, additional algorithms should be incorporated. 
For example, [34] developed an improved genetic al-
gorithm, where an obstacle avoidance algorithm and 
the distinguish algorithm are combined with a GA 
algorithm to select only the feasible paths and to im-
prove the path planning efficiency. The distinguish 
algorithm is designed for distinguishing whether the 
path is feasible or not.

In this paper we present a hybrid GA-based meth-
od developed to optimize path planning and naviga-
tion using pollutant maps generated from RS imagery. 
The power of the global GA search is combined with 
the speed of the local optimizer. Both optimizers work 
cooperatively to find the optimal solution, where 
GA determines the optimal region, and then the lo-
cal optimizer takes over to find the best position for 
acquiring water samples [13]. In order to deal effec-
tively with the large-scale environment, the following 
modifications to the state-of-the-art approaches were 
introduced. In the first place, this paper implements 
an improved combination of a GA with an obstacle 
avoidance algorithm and the distinguish algorithm 
proposed initially in [34]. This algorithm puts a feasi-
ble path in the feasible group and deletes an infeasible 
path or keeps it in the infeasible group, which mark-
edly improves the efficiency of the path planning. The 
big family pool was adopted in our system, which 
consists of all old-generation solutions and current-
generation offsprings obtained after mutation and 
crossover operations combined with different meta-
heuristic solutions. Based on the Cooperative Genetic 
Optimization Algorithm [14], it offers a greater search 
selection diversity and gives the system the ability to 

save the elite searching experience from one popula-
tion to the next one. 

Multi-layered maps were employed to generate 
spatial and functional properties of the environment. 
Those maps enable the planning system to perceive 
and interpret environments according to different en-
vironment features. ROI maps can be extracted from 
the multi-layer map as additional layers. The ROI ap-
proach facilitates the planning system in directing the 
search toward desirable patches by paying additional 
attention to desired regions, and assuring at the same 
time the generation of feasible solutions [11]easily 
adaptable to different control strategies that ensure 
the collection of data of the greatest value. This paper 
proposes a hybrid Genetic Algorithm (GA. 

In general, each optimization problem to be solved 
by a GA method requires a unique fitness function 
that represents a performance criterion used in the 
evaluation of the performance of all chromosomes in 
the population. Many functions, such as travelling dis-
tance, time window and the sample values (weights) 
should be optimized simultaneously. This may involve 
a combination of maximization and minimization cri-
teria [5]. Individual objective functions are usually 
combined into a single composite function by weight-
ing the objectives with a weight vector. The result of 
the optimization should reach a reasonable solution 
that compromises multiple objectives [23]. For mis-
sion planning of an unmanned aerial vehicle (UAV), 
[29] used the distance, the hazard, and the maneuver-
ing of the route as components of their cost function. 
Each component has a weight factor assigned accord-
ing to the objectives of the mission. The hazard is re-
lated to the existence of obstacles near the path, and 
the maneuvering refers to the maneuvers required to 
perform target tracking. For efficient determination 
and search of the best flight (UAV) routes, an objec-
tive function was created in [27] which involves the 
timeliness and the smoothness of the path. The objec-
tive function discussed in [9] included several com-
ponents: the cost of the motion from the start node to 
the current node, the heuristically estimated value of 
getting from the current node to the goal, the terrain 
traversability component, the direction change cost, 
and the cost of navigating in shadow areas. Each com-
ponent has a corresponding coefficient factor used to 
weight the objective function components according 
to its importance to the mission. An optimized path 
planning for skid-steered mobile robots [16] uses 
a cost function which consists of the terrine proper-
ties, longitudinal motion and turning of the robot. In 
this work, an objective function proposed to deal with 
the experiment conditions comprises the following 
components: the samples value, the ROI award, the 
distance, and the sampling time. 

The waypoint technique was used in the path 
planning process as an approach appropriate for 
large monitoring environments [30]. Waypoints are 
defined as abstract points [15] used to determine lo-
cal positions [28] through which a mobile platform 
can navigate, reach its region-of-interest destination, 
and collect the water pollutant samples [22]. In the 
application discussed in this paper, waypoints corre-
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spond to sampling points. In order to deal with mul-
tiple sampling areas, multi-point crossover (MPC) 
was implemented. The MPC operator works to build 
the final solution which consists of valuable segments 
of local paths from many search strategies. The muta-
tion operator improves the local search and helps the 
population to avoid local minima. The evolution pro-
cess optimizes the path planning by designing new 
chromosomes which consist of best value samples 
from many global paths.

Experiments were conducted on data from Lake 
Winnipeg located in Manitoba, Canada. The adap-
tive search techniques presented in the paper were 
applied to optimize the location of the sampling 
points for different pollution indices and behaviours: 
the concentration of individual pollutants and their 
combinations, and the maximum gradient of pollut-
ant concentration.

The structure of the paper is as follows. Section 2 
addresses the sample acquisition problem using re-
mote sensing data. A discussion of the proposed hy-
brid GA-based architecture for path planning and the 
optimisation of the multi-behaviour sample acquisi-
tion is presented in Section 3. Experimental results 
are discussed in Section 4.

2. Multi-Strategy Sample Acquisition Mission
2.1. Problem Statement 

The problem addressed in this paper consists in 
planning a trajectory for precise acquisition of water 
pollutants by a mobile platform, when the planning 
process is guided by prior rudimentary information 
about the distribution of pollutants obtained from 
remote sensing data. The acquisition mission should 
incorporate different acquisition strategies. 

The sample acquisition mission is performed 
within a more general procedure consisting of the fol-
lowing phases: 
1) Determination of water regions and their types, 

sample location zones, and water pollutants to be 
sampled; 

2) Identification of the pollutant detection indices, 
coverage methods (e.g., uniform coverage, maxi-
mum concentration gradient) and the number of 
samples; 

3) Selection of the sources of remote sensing data 
and their calibration methods; 

4) Selection of the ancillary data from in situ sensors 
(e.g. wind, temperature); 

5) Determination of the acquisition mission param-
eters (e.g., total mission time). 
Most of the above factors and conditions affect the 

strategies that have to be incorporated in the plan-
ning procedure. Mission strategies can be classified in 
two categories:

(1) Water pollutant concentration strategies 
In this type of strategies the aquatic acquisition 

platform collects the most valuable samples from dif-
ferent pollutant classes and their combinations, such as 
•	 Chl-a,
•	 Chl-a & (TSS), 
•	 Chl-a & Dissolved Organic Carbon (DOC), 
•	 Chl-a & TSS & DOC.

In this class of strategies, specific samples should 
be collected while neglecting other samples within 
a certain time window. Time windows can be im-
posed because of the deterioration of the quality of 
samples over a period of time. Time requirements for 
Chl-a concentration sampling are discussed in [12]. 

With respect to the types of pollutants, the RS data 
have to be pre-classified. The final path maximizes the 
value of the collected samples along a trajectory that 
traverses regions of different distributions of the pol-
lutant concentration. As a result, the planning algo-
rithm works on many maps created to represent differ-
ent concentration levels for different water pollutant 
classes. The optimal strategy directs the path to the 
best Region of Interest (ROI) zone. The samples values 
(weights) vary depending on the mission objective. 

(2) Local coverage strategies: 
In this mode the platform executes a specific navi-

gation and collection behaviour depending on the 
shape of the sample spatial distribution. We distin-
guish here such sampling strategies as the uniform 
coverage of high-concentration areas, sampling at lo-
cal concentration maxima, and sampling along maxi-
mum gradient lines, which is of interest in many envi-
ronment monitoring applications [36]. The sampling 
process can be different in each patch to comply with 
the general and local mission goals. 

Both types of strategies execute under some spe-
cific constraints. Time window constraints can be 
imposed on certain pollutant patches, and travel dis-
tance constraints on other patches. Also, a certain 
number of samples have to be collected in a specific 
patch before heading to another one.

2.2. GA-Based Planning System
Due to the complexity of the mission trajectory 

optimization problem, a hybrid GA/Adaptive Search 
system is proposed and investigated in this paper. The 
general architecture of the planning system is based 
on the deliberative architecture model [19]. As illus-
trated in Fig. 1, the deliberative level comprises the 
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Fig. 1. General architecture of the GA- based planning 
system
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environment modelling level, which operates on the 
remote sensing data and the ancillary information, 
and the adaptive GA-based trajectory generation level.  

Water wave reflection can be exploited to deter-
mine the concentration of water pollutants. Examples 
of spectral signatures for different samples of chloro-
phyll pigment and TSS are shown in Fig. 2.

The maps provide, for each spatial point (pixel), the 
numerical values NLi of the measured pollutants. The 
spatial resolution of the maps corresponds to the reso-
lution of satellite images. Figure 3 shows the following 
layers: bathymetric map (L1), Chlorophyll-a (L2), TSS 
(L3), and the maximum gradient of chlorophyll-a (L4). 

The overall goal of the acquisition mission is to 
maximize the quantity and the quality of the collected 
water pollutant samples V during the mission:

  (3) 

where V is the value of the sample, Nj is the number of 
the samples for each pollutant, and M is the number 
of water pollutant classes. 

3. GA Method for Path Planning 
3.1. Genetic Algorithm Architecture 

The basic operation of the proposed GA-based 
path planning procedure can be summarized as fol-
lows (Fig. 4). The sampling points correspond to the 

Fig. 2. Spectral signatures:  a) Chl-a, b) TSS
  

Fig. 3. Multi-layer map

The following two models were applied to mea-
sure the concentration of TSS [17] and Chl-a [10], [1] 
using different spectral bands of satellite images:

  (1) 

where Lxxx is the radiance value of the band at wave-
length xxx, and

	 MCI	=	L709	−	L681	−	0.389	(L753	−	L681)	 (2)
 

The factor 0.389 is calculated as the wavelength 
ratio (709–681) / (753–681).

The input data structure used to generate the in-
formation required for multi-strategy path planning is 
implemented in the form of a multi-layer map (Fig. 3), 
which consists of a set of overlaying grid-based maps. 
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Fig. 4. Genetic Algorithm based path planning

waypoints of the global path of the mobile platform. 
Thus, the global path consists of several local paths, 
which are the arcs between two waypoints with a di-
rected connection between them. The initial popula-
tion of waypoints is pruned to generate collision free 
paths, subsequently stored in the initial chromosome 
pool population. Unfeasible solutions are deleted. 

The adaptive search (AS) system improves the elite 
paths (the best 10 solutions) and returns efficient 
paths adapted to the local navigation behaviour. The 
big family pool consists of all old-generation solutions 
and current-generation offsprings obtained after the 
mutation and crossover operations combined with 
AS solutions. It gives the system the ability to save the 
elite search experience from one population to the 
next one [14]. The big family search results are sort-
ed and pruned to form the next generation (Fig. 5). 
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A more detailed description of individual steps of the 
algorithm follows below.

3.2. Path Planning and Initial Waypoint 
Population 

In the GA-based path planning procedure the pop-
ulation is represented, as in the Vehicle Routing Prob-
lem, by ordered sets of waypoints. Each feasible set is 
considered to be an individual in the population. Each 
waypoint, which is a sample candidate, represents 
a location in the environment (x,y). The initial geno-
type can be represented by a cell array, where each 
pair of cells represents the local path length and the 
heading angle towards the subsequent waypoint. 

The path planning generator works as follows: 
1) Determine the first waypoint in the path, i.e., the 

starting point, with the initial angle equals to zero.
2) While the path planning doesn’t reach the desired 

target, generate a random number of L, the path 
length, between Lmin and Lmax, and a random head-
ing angle β between βmin and βmax obtaining the 
next waypoints[31]. A maximum number of way-
points is given for each search strategy.

3) Different strategies are applied to water pollutant 
patches by adjusting L and β. Each path planning 
strategy handles different number of samples de-
pending on the search path.

Fig. 5. Big family search [14] 
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Fig. 6. Waypoint generation scheme

4) Continue with another patch or return to the start-
ing point, depending on constraints, such as the 
maximum travel distance or the maximum num-
ber of water samples. 
Figure 6 illustrates the path planning generator. 
The chromosomes are encoded as an integer 

string. Each gene consists of two variables, the lo-
cal path length and the heading angle as shown in 
Fig. 7a. Depending on the start point and the chromo-
some, the waypoint generation produces records as in 
Fig. 7b. The path planning waypoints are represented 
in the form of a long array as depicted in Fig. 7c. The 
GA search finds the waypoints between the starting 
point of the mission and the destination point.  
a)
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An obstacle free path planning algorithm [35] was 
adopted to deal with spatial constraints. It produces 
a feasible path that satisfies the conditions that the 
waypoints should be located outside the obstacles, in 
the sampling space, and the local path should not in-
tersect with the obstacles.

In order to comply with the feasibility constraints 
and to enhance the efficiency of the path, a certain 
number of the waypoints in the elite solutions can be 
modified for each generation by applying three pos-
sible operations: waypoint deletion, insertion, or re-
placement [2] a tabu search system model is designed 
and a tabu search planner algorithm for solving the 
path planning problem is proposed. A comprehensi-
ve simulation study is conducted using the proposed 
model and algorithm, in terms of solution quality and 
execution time. A comparison between our results 
with those of A* and genetic algorithms (GA. Waypoint 
deletion eliminates all waypoints in the clear water 
body. The waypoint insertion operation explores the 
neighbourhood and inserts a new waypoint, accord-
ing to a predefined behaviour for each water pollutant 
type. After deleting and inserting the waypoints the 
algorithm evaluates the path, conducts a neighbour-
hood search to replace the lowest waypoint value 
with a new one, and builds another feasible path Pn 
that satisfies the mission constraints. 

3.3. Fitness Function
The fitness function is a particular type of the ob-

jective function that quantifies the optimality of a so-
lution and evaluates the suitability of a solution with 
respect to the overall goal. In our navigation problem, 
it maximizes the collected information, directs the ro-
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bot towards the ROI, and incorporates distance and 
time penalties. 

The proposed fitness function F consists of 4 com-
ponents, calculated for each candidate sample

 F = SV + ROI + DIS + ST (4)
where:
SV – data set value, which determines the value of  
acquired samples according to Eq. 5; 

 	 (5)	

where sample values are calculated as the values of 
V in Eq. 3. 

ROI – the region of interest award, introduced in 
order to optimize the convergence of the search for 
quality samples (Eq. 6):

 
  	 (6)

where: DIS – distance factor; ST – sampling time fac-
tor.

Two objective functions with different forms of 
DIS and ST factors were tested to assess their impact 
on the effectiveness of the sample acquisition mis-
sion: 

Objective function 1 linearly maximizes the 
sample value and the ROI award and exponentially 
minimizes the sampling time and the mission travel 
distance. The distance and the time become, as the 
sample acquisition mission progresses, quadratically 
more expensive.

Objective function 2 linearly maximizes the sample 
value as well as the sampling time and the ROI award, 
and linearly minimises the mission travel distance. 

Objective function 1 

Objective function 2

Fig. 8. Linear and nonlinear DIS and ST components of 
the fitness function

3.4. Multi-Behaviour Operation 
The basic idea of the multi-strategy GA-based path 

planning is that the acquisition platform explores 
water pollutant patches using different behavioural 
characteristics depending on the sampling require-
ments in each patch. The behaviours affect the local 
search optimization where the best evaluated neigh-
bour is selected according to the adopted behaviour. 
The following behaviours represent different sam-
pling strategies.

Behaviour 1– Short local path and high sample values. 
The sampling process selects the best sample accord-
ing to equation

   (7)

where i is the departure waypoint, j is the destination 
waypoint, and is the chlorophyll concentrations in cell 
( x,y) of the MCI layer. 

Behaviour 2 – Maximum gradient (MG) sampling. 
Valuable samples (bigger than a given threshold num-
ber) are selected along a short local path according to 
the following equation:

  	 (8)

The sampling behaviour for other samples maxi-
mizes the local path according to equation

  (9)

Behaviour 3 – Multiple pollutant patches.
The AS procedure selects the best sample value 
(Eq. 10), with the maximum local path range distance 
and the highest sample weight.

   (10)

where and are Chl-a and TSS concentrations in cell 
(x,y) taken from the MCI and TSS maps. 

Behaviour 4: Long local path and TSS sampling
The AS procedure selects the best sample value as de-
fined by equation (11), where the value sample cor-
responds to the maximum local path range distance 
and the highest sample weight;

   (11)

An example of water pollutant patches obtained 
for different behaviours from a 3-layer map (MCI, TSS 
and MG) is shown in Fig. 8. 

3.5. Multi-point Crossover
Multi-point crossover is used to enhance the 

process of selecting valuable samples located in dis-
tant zones. The crossover procedure is explained in 
Fig. 10. Parent chromosomes, P1 and P2, are cut at 
multiple random locations, and the portions of the 
chromosomes between the cuts are swapped. The 
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result is a pair of offsprings I1 and I2. The crossover 
is applied on the best-fitness chromosomes chosen 
from the pool. Due to the difference in the chromo-
some length, the crossover point should be applied to 
the shorter chromosome. 

3.6. Planning Process
Figure 11 represents the overall architecture of 

the developed adaptive GA-based mission planning 
system. The mission objective is defined and accom-
panied with a strategy definition to achieve the mis-
sion goal. A multi-layer map is generated to interpret 
the global environment and to weight the importance 
of different water pollutants in the sampling strategy. 
A set of ROIs is generated to guide the search toward 
specific patches associated with their acquisition 
strategies. 

An adaptive search algorithm improves the multi-
strategy path planning in different patches employing 
local search optimising procedures. A suitable fitness 
function evaluates the chromosome in the search for 
maximizing the mission goal. 

4. Experimental Results 
4.1. Experimental Framework

The experiments were carried out using satel-
lite data from the northern basin of Lake Winnipeg 
for a path starting at the point located at longitude 
(99˚02’08”) W and latitude (55˚35’18”) N and the des-
tination point at longitude (96˚ 50’ 24”) W and lati-
tude (51˚55’51”) N. The direct distance between the 
start point and the target is around 236 km. The maps 
used in the experiments were in the form of a raster 
grid, where the dimensions of cells corresponded 
to the resolution of the MERIS satellite sensor, i.e., 
260 m × 300 m. Each cell had an associated value Vx,y 
obtained from the multi-layer map as discussed in 
Section 2. 

ROI maps guide the multi-strategy sampling to 
orient the acquisition platform toward the valuable 
samples in the ROI zones using the penalty/award 
mechanism. Figures 12 a) b) and c) show regions of 
interest for MCI, TSS and the maximum gradient of 
the chlorophyll concentration. The regions are de-
fined as the concentration of TSS bigger than 0.3 from 
the normalised TSS model, and the concentration 
of chlorophyll-a bigger than 0.5 from the MCI nor-
malised model. Figure 12d represents the overall ROI 
formed from the MCI and TSS zones. Figure 12e illus-
trates three ROI zones, which are MCI, TSS and maxi-
mum gradient chlorophyll concentration, used in the 
experiments. 

Matlab Genetic Algorithm Optimization Toolbox 
(GAOT) was used to program the proposed hybrid 
system. Table 1 shows the Genetic Algorithm param-
eters chosen for the optimization process.

Four experiments were conducted with two ob-
jective functions (Fig. 8) tested. Objective function 2 
(linear optimization) was incorporated in the fitness 
function used in experiments 1 and 2, and objective 
function 1 (exponential optimization) in experiments 
3 and 4. Hard distance and time constraints were im-
plemented in the first two experiments. The mission 

Fig. 9. Water pollutant zones for multi-behaviour navi-
gation
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time was bounded by the value of 12 hours, and the 
travel distance was limited to 400 km. In experiments 
3 and 4, the mission time had to be less than 9 hours, 
and the travel distance was limited to 330 km.

4.2. Path Planning Experiments
In the first experiment, the sample value (SV) was 

the sum of the TSS and Chl-a sample values. The re-
sults show that the path includes 10 samples from the 
clear water zone (outside the ROI zone), as shown in 
Fig. 13. The obtained results provide the rationale for 
hybridising the GA-based search for optimal samples. 

Fig. 13. Sample acquisition paths: Experiment 1 Fig. 11. Adaptive GA-Based Navigation System

Fig. 12. a) Chl-a ROI (MCI > 0.5); b) TSS ROI (TSS > 0.3); 
c) Chl-a Max Gradient ROI; d) Combined Chl-a & TSS re-
gions of interest, and e) Combined Chl-a & TSS & MG 
regions of interest

 
a) b)

 
c)

 
d) e)

Table 1. Parameters of the Genetic Algorithm 

Genetic Parameters Magnitude

Number of generations 150

Population size 120

Crossover rate 60% randomly and the elite 

Mutation rate 5% randomly and the elite 

Type of crossover Single-point and multi-point 
crossover 

Type of mutation 4 point random & 4 maximum 
points 

Selection type Roulette Wheel

Strategy

Path waypoints

Search
algorithm

Mission

e

trajectory

Desired
ROIs

Modelling
and pruning

BH_1

ROI_1

BH_2

ROI_

BH_3

ROI_
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Experiment 2.
A simple adaptive search, consisting in limiting 

the search to ROIs, was introduced in the second ex-
periment. However, no specific behaviour guided the 
waypoint generation. Figure 14 presents the path 
generated by the modified system. The sampling area 
is located entirely in the ROI. Table 2 compares the 
performance of the two experiments. 

Table 2. Results of experiments 1 and 2

Experiment 1
(GA)

Experiment 2 
(ROI-optimized GA)

Sampling time 0.475 @ 38 samples 0.475 @ 38 samples

path length (m) 3.9989e+005 3.4364e+005

Samples value 0.7004 0.8304

ROI award 0.3675 0.5550

Fig. 14. Sample acquisition paths: Experiment 2

The path in the second experiment was approxi-
mately 56 km shorter and the value of the samples in-
creased by about 13 percent, while keeping the num-
ber of samples at the same level. 

4.3. Multi-Behaviour Navigation
In order to assess the multi-behaviour perfor-

mance of the system and to further improve the path 
quality – in the context of the GA methodology – dif-
ferent behaviours were introduced to the local adap-
tive search the next two experiments. The third ex-
periment explores the local behaviour optimization 
which performs two collection strategies depending 
on the types of the samples. Therefore, the ROI set 
consists of two zones, Chl-a and TSS. The search mi-
nimises the local path in the MCI patch according to 
Eq. 7, and maximises the local path in the TSS patch 
according to Eq. 11. The neighbourhood of a solution 
is explored, and the best neighbor is selected accord-
ing to the adopted behaviour in each patch. Objective 
function 1 was used to optimise this experiment. The 
multi behaviour navigation shows good sampling 

performance in the two different patches, as shown 
in Fig. 15.

Fig. 15. Sample acquisition path from experiment 3

The mission collects 22 pure chl-a samples and 6 
TSS samples along a 282 km long path. The samples 
value is 0.645, and ROI award equals to 0.6125. The 
distances between the chlorophyll samples are short-
er than between the TSS samples, which is a conse-
quence of applying the behaviour equation (Eq. 7) 
and high award for the Chl-a ROI. The longer local 
path between the six TSS samples results from the be-
haviour equation (Eq. 11). The total mission time is 8 
hours and 54 minutes. The travel time is 7 hours and 
14 minutes. 

In the fourth experiment, the zone of the maxi-
mum gradient of chlorophyll concentration was intro-
duced, which produced three separate patches with 
three different local search behaviours. Due to the be-
haviour conflict between the maximum gradient and 
the maximum value of the chlorophyll concentration, 
a new ROI zone was created. Thus, the three separate 
ROIs were generated as follows: the Chl-a zone, the 
maximum gradient of chlorophyll concentration, and 
the chlorophyll and TSS concentration zone. Figure 
16 depicts the ROI map which was used in this experi-
ment. The Chl-a samples were treated as the high-
est value samples with the shortest local path in the 
search algorithm (Eq. 7). In the maximum gradient 
zone, the search made the acquisition platform navi-

Fig. 16. Multi behaviour sampling for different patches
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gate in adaptive way to follow the maximum gradient 
curve, using Eq. 8 and Eq. 9, and to maintain a proper 
distance between the samples. In the chlorophyll and 

The results without the enhancement are shown 
in Fig. 18a. Both the quality of the solution and the 
speed of the optimization are enhanced by an order 
of magnitude by applying the improved operations 
(Fig. 18b).

The repeatability of the results is depicted, for 
experiments 3 and 4, in Figures 19a and 19b respec-
tively. The convergence of both the best solution and 
the average solution is high. 

 

 
Fig. 17. Sample acquisition path from experiment 4

Fig. 18. Convergence in experiment 1 & 2 

TSS zone, the behaviour model as in Eq. 10 was adopt-
ed. All behaviour optimization algorithms explored 
the neighbourhood and selected new waypoints in 
order to enhance the quality of the solution. Figure 17 
shows an example of the planned path.

 The path planning algorithm produced 28 sam-
ples as follows: 9 samples from the TSS & Chl-a zone; 
5 samples from the MG zone; 14 samples from Chl-a 
zone including the start waypoint. The samples were 
collected along a path 285 km long. The normalized 
sample value was 0.5040 with the ROI award equal 
to 0.5650.

4.4. Convergence Analysis
To improve the convergence of the GA-based 

search, two crossover and two mutation operations 
were employed. The solutions to these operators 
were divided into two categories as follows: the first 
one consists of the elite solutions, and randomly se-
lected solutions represent the second category. 

The simulation results show that: 
(1) The new procedure effectively enhanced the 

global search ability and improved the local search-
ing ability;

(2) High convergence rate was obtained.

Fig. 19. Convergence in experiment 3 & 4

5. Conclusions 
In this paper, hybrid genetic algorithms were 

proposed for navigation in a partly known environ-
ment, where the objective of the planning task is to 
find the optimal path for a mobile sample acquisi-
tion platform. The total quantity and quality of water 
samples is to be maximized according to navigation 
goals specified for each acquisition zone. Sampling in 
each patch may be guided by different patterns of be-
haviour for different purposes. Thus, the acquisition 
system is able to execute different behaviours along 
the global path. A hybrid genetic search was devel-
oped to deal with such a complex environment. The 
adaptive search algorithm models behaviours in dif-
ferent surrounding areas and executes them in each 
generation at the level of local path navigation. The 
locality of the navigation was defined in terms of re-
gions of interest (ROI). In the process of generating 
the waypoints, the adaptive search deletes and inserts 
new waypoints in each solution depending on the 
ROI behaviour. This enhances the flexibility and the 
efficiency of path planning. The ROI component was 
introduces also in the fitness function, greatly speed-
ing up the convergence of the planning process. Tests 
were conducted using medium-resolution satellite 
imagery. Multi-layered maps provided a rich context 
to the adaptive search system to perform flexible local 
search behaviours. 

The experiments performed on large area envi-
ronment show that the adaptive GA-based path plan-
ning method offers robust search capabilities and 
supports different sample acquisition strategies, en-
suring the collection of meaningful data over multiple 
areas of interest. 
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