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ABSTRACT. Periodic orbits play a fundamental role in the study and deep understanding of
the behavior of dynamical systems. In the current work, we investigated the periodic orbits
around the triangular libration points of the restricted three-body problem. The equations of
motion of the restricted problem are presented when both primaries are prolate triaxial. Periodic
orbits around the triangular points are obtained and then illustrated graphically for some selected
initial conditions and for the entire domain of the mass ratio µ, as well. The eccentricities of
the periodic orbits are obtained and then represented graphically. It is observed that the periodic
orbits about the triangular stationary points are elliptical, and the frequencies of short and long
orbits of the periodic motion are influenced by the shape of the primary bodies. Furthermore, we
found that the perturbing forces influence the period, the orientation, and the eccentricities of the
short and long periodic orbits.
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1. INTRODUCTION

The restricted problem of three bodies is considered one of the most important and famous
problems of dynamics. This is due to its wide extremely important applications in the field of
space dynamics, it describes accurately many real-world problems. In the restricted three-body
problem, a body of negligible mass moves under the influence of the gravitational fields of two
massive bodies. These two primary bodies rotate in circular or elliptic orbits about their common
center of mass. Having negligible mass, the force exerted on the two primaries by the third body
may be neglected.

The dynamic system of the restricted three-body problem is characterized by the presence of five
equilibrium points. In this system, the gravitational and the centrifugal forces on a spacecraft
mass cancel each other out. These fixed points are called equilibrium points. Three of these
points are collinear, and two of them are triangular. These points rotate at the same frequency as
the massive bodies, and thus the spacecraft mass’s position relative to the primaries is constant.
This makes them very important for research and space operations (Marsola et al., 2021); (Reiff
et al., 2022).
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Furthermore, the periodic orbits around these equilibrium points acquired great attention and
interest due to the crucial need for space orbits in the proximity of one of the collinear or
triangular equilibrium points, (Abd El-Salam, 2019). Also, periodic orbits can be utilized to
explore small solar system bodies, including comets and asteroids.

Different methodologies have been used to address the restricted three-body problem. In general,
quantitative methods, either analytical or numerical, give precise and accurate information on the
evolution of differential systems. However, this information is usually limited to the solution of
interest and to a small vicinity. Also, in most cases, the accuracy decreases as time increases. In
the current work, to obtain the required accuracy of the actual space mission orbit, we combined
an analytical perturbed solution with a qualitative method. This technique gives partial but also
rigorously demonstrated properties that are valid at least for long periods of time. Moreover, it
deals with questions of existence, integrals of motion, uniqueness, periodic orbits, stability, etc.

Over the years, many researchers have investigated the issue of the restricted problem from
various aspects, such as locations, stability of stationary points, and the periodic orbits, to
mention some (Abouelmagd et al., 2016) (Burgos et al., 2019) (Pathak et al., 2019).

Recently, Poddar and Sharma, (2021) studied the equations of motion for the problem, which
are regularized in the neighborhood of one of the finite masses. Further, the authors studied the
existence of periodic orbits in a three-dimensional coordinate system when the reduced mass
equals zero. Radwan and Abd El Motelp,(2021) investigated the linear stability of the restricted
three-body problem when both of the massive primaries are triaxial. Also, they studied the
periodic orbits in the vicinity of the triangular points. The authors showed that the shape of
periodic orbits changed because of the triaxiality of the primary bodies. (Alrebdi et al., 2022)
investigated how the mass ratio µ and the transition parameter influence the stationary points of
the pseudo-Newtonian planar circular restricted problem. The authors also, showed how these
parameters influence the networks of simple symmetric periodic orbits.

In the current work, we study the periodic orbits around the triangular points in the elliptic
restricted three-body problem frame of work. To obtain a more realistic representation, the
problem is generalized in the sense that bigger and smaller primaries are modeled as prolate
spheroids. Also, we study in detail the variations in the angular frequencies for the long and short
periodic orbits due to the shape of the primaries. Moreover, we compute explicit expressions
for the eccentricities of the ellipses and determine the orientations of the principal axes for the
ellipses that represent periodic orbits.

2. MOTIVATIONS

It is well known in the field of space science that most celestial bodies are often irregular in
shape. In the original version of the restricted problem, the massive primaries are supposed to be
spherical and symmetrical bodies (Szebehely, 1967). However, when studying various problems,
the irregular shapes of these bodies must be taken into account in order to obtain highly efficient
solutions. In some cases, considering the two primaries as point mass is not sufficient to describe
the dynamic problem.

Over the past decades, several modifications have been proposed to include different additional
parameters in the effective potential, such as the oblateness, the triaxiality, or the radiation of the
two massive primaries (AbdulRaheem and Singh, 2008) (Beatty and Chaikin, 1999) (Radwan
and Abd El Motelp, 2021) (Sharma and Subba, 1975) (Zahra et. al, 2017), and (Zotos, 2020).
The mentioned reasons motivated us to study the dynamics of the problem under the influence
of the real shape of the primaries. Furthermore, periodic orbits give more insights into a better
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understanding of the complex dynamical system of the restricted problem. Therefore, the crucial
need for periodic orbits motivated us to study these orbits when both primaries are prolate
spheroids.

3. DYNAMICAL MODEL

The current dynamical system contains an infinitesimal mass that rotates in the orbital plane of
the two massive bodies, the primary m1 and the secondary mass m2. The third infinitesimal one
is considered to act as a test particle while the two primaries are prolate triaxial and circulate
about their common centre of mass. The motion of the infinitesimal body doesn’t have any
dynamic impact on the motion of the main bodies, due to its insignificant mass. In order to
remove the time dependence from the equations of motion, it is better to use a synodic-rotating
frame that rotates with constant angular velocity about the z-axis. The origin of the reference
frame is centered at the barycentre of the system, and the x-axis lies on the line joining the two
primary bodies. For convenience, we use a units system where the constant of gravity G and the
distance between the centers of the two primaries are both equal to unity. Utilizing the reduced
mass µ = m1

m1+m2
, we can express the dimensionless masses of the two primaries as m1 = 1− µ

and m2 = µ. Following the notations of Szebehely, (1967), the equations of motion of the tiny
object in the dimensionless rotating-synodic frame are given by

ẍ− 2 n ẏ =
∂U

∂x
, ÿ + 2 n ẋ =

∂U

∂y
, (1)

where the amended potential function U can be written as

U =
n2

2

(
x2 + y2

)
+

(1− µ)

r1

(
1 +

Aσ
2 r21

)
+
µ

r2

(
1 +

Aγ
2 r22

)
(2)

and

r1 =

√
(x+ µ)2 + y2,

r2 =

√
(x+ µ− 1)2 + y2,

(3)

The perturbed mean motion of the primaries is given by

n =

√
1

a

(
1 +

3

2
(Aγ + Aσ) (1 + e2)

)
, (4)

where r1 and r2 are the distances of the two massive bodies from the infinitesimal third body. Aγ

and Aσ represent the prolateness coefficients. a and e are the semi-major axis and eccentricity of
either primary, respectively.

4. THE LOCATIONS OF THE TRIANGULAR POINTS

The locations of the equilibrium triangular points L4 and L5 can be obtained by setting all relative
velocity and relative acceleration components equal to zero and solving the resulting system of
equations Ux = Uy = 0. The first derivatives of the potential function can be written as

Ux = n2 x− (3 Aγ + 2 r22) µ (−1 + x+ µ)

2 r52
− (−1 + µ)

(x+ µ)

[
3 Aσ
2 r1

5 −
1

r31

] (5)
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Uy = y

[
n2 + (−1 + µ)

(
3 Aσ
2 r51

+
1

r31

)
− µ

(
3 Aγ
2 r52

+
1

r32

)]
(6)

Since the perturbations considered in the present work are small, i.e., the prolateness coefficients
are much smaller than unity, therefore, we can ignore its values (i.e., r1 = r2 = 1). Then it may
be reasonable here to suppose that the locations of the triangular points L4,5 are the same as
given by classical restricted problem but perturbed by terms δ1, δ2 = O(Aγ, Aσ). In this case,
the solution of the classical restricted problem can be written as

ri = 1 + δi, δi << 1, (i = 1, 2) . (7)

Using equations (5) and (6) and solving for x and y up to order one in the involved small
quantities δ1, δ2, we obtain

x =
1

2
(2 δ1 − 2 δ2 − 2 µ+ 1) , y = ±

√
3

2

√
1 +

4

3
(δ1 + δ2), (8)

Substituting the values of x, y, r1, and r2 into equations (5) and (6), and expanding the resulting
equations, we can retained only first order terms in δ1, δ2. Therefore, we get

δ1 =
1

3
− 1

3 a

(
1 + e2 +

3

2
Aγ
(
1 + e2

)
+ Aσ

(
1 + e2

))
,

δ2 =
1

3
− 1

3 a

(
1 + e2 +

3

2
Aσ

(
1 + e2

)
+ Aγ

(
1 + e2

))
.

(9)

Substituting the values of δ1, δ2 into equations (8) yields the coordinates of the equilibrium
triangular points

x =
1

2
− µ− Aγ

6 a

(
1 + e2

)
+
Aσ
6 a

(
1 + e2

)
,

y =±
√

3

18

[
13−

(
1 + e2

) [4

a
+

5

a
(Aγ + Aσ)

]] (10)

Note that if we ignore the involved perturbations, equations (10) will lead to the corresponding
classical one.

5. PERIODIC ORBITS

It is well known that periodic orbits are of great importance, and they represent the backbone of
studying the behavior of dynamic systems in the field of celestial mechanics. Let the locations
of the equilibrium points be given as (xL4,5 , yL4,5). Let us give the equilibrium points a small
displacement (ξ0, η0), i.e., ξ0, η0 � 1. We have

x = xL4,5 + ξ0, y = yL4,5 + η0 (11)

Then the corresponding characteristic equation of the current problem is given by Szebehely,

(1967)
λ4 + (4 n2 − UL4,5

xx − UL4,5
yy ) λ2 + UL4,5

xx UL4,5
yy −

(
UL4,5
xy

)2
= 0 (12)

where

UL4,5
xx =

−1

2
+

5

4 a

(
1 + e2

)
+ Aσ

[
−3

2
+

33

8 a

(
1 + e2

)
+

3 µ

2
− 11 µ

4 a

(
1 + e2

)]
+ Aγ

[
11

8 a

(
1 + e2

)
− 3 µ

2
+−11 µ

4 a

(
1 + e2

)]
,

(13)
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UL4,5
yy =

1

2
+

7

4 a

(
1 + e2

)
+ Aσ

[
−3

2
+

59

8 a

(
1 + e2

)
+

3 µ

2
− 17 µ

4 a

(
1 + e2

)]
+ Aγ

[
25

8 a

(
1 + e2

)
− 3 µ

2
+

17 µ

4 a

(
1 + e2

)]
,

(14)

and

UL4,5
xy =

√
3

3

[
−1

2
+

11

4 a

(
1 + e2

)
+

(
1− 11

2 a

(
1 + e2

))
µ+ Aγ

(
29

8 a

(
1 + e2

)
+

(
5

− 35

2 a

(
1 + e2

)
µ

))
+ Aσ

(
−5 +

111

8 a

(
1 + e2

)
+

(
5− 35

2 a

(
1 + e2

)
µ

))]
.

(15)

U
L4,5
xx , UL4,5

yy , and UL4,5
xy are the second partial derivatives of the amended potential function

evaluated at the triangular points. The roots of the characteristic polynomial λi, of the present
system, in the range 0 ≤ µ ≤ µcritical, are purely imaginary. Therefore, the motion about the
triangular equilibrium points L4,5 is stable and composed of two harmonic motions governed by
the variations

ξ = C1 cos s1t+D1 sin s1t+ C2 cos s2t+D2 sin s2t,

η = C̄1 cos s1t+ D̄1 sin s1t+ C̄2 cos s2t+ D̄2 sin s2t
(16)

where s1, s2 are the frequencies for long and short periodic orbits, respectively. The coefficients
C1, D1, C̄1, and D̄1 are the long periodic terms, while the coefficients C2, D2, C̄2, and D̄2 are
the short periodic terms. The frequencies s1, and s2 are given up to order µ2 as

s1 =
1

3226944

[
98

√
21

a

(
1 + e2

) (
−5488 + 47432 µ+ 157542 µ2

)
− 7 Aσ

(
16464

(
−42

+
25
√

21

a

)
− 392

(
−1764 + 2573

√
21

a

)
µ+ 7324086

√
21

a
µ2 +

√
21

a
e2
(

411600

− 1008616µ+ 7324086 µ2

))
+ 7 Aγ

(
−71344

√
21

a
+ 392

(
1764 + 8339

√
21

a

)

µ+ 21978726

√
21

a
µ2 +

√
21

a
e2
(
−71344 + 3268888 µ+ 21978726 µ2

))
− 6 a

√
21

(
−1 + e2

) (
Aσ

(
44688 + 165592 µ− 13661634 µ2

)
+ 14

(
−784 + 1624 µ+ 128330 µ2

+ Aγ

(
−2352− 429352 µ+ 2817990 µ2

)
+ 14

[
8

(
686

(
4
√

21 +
21

a

)
+

14406

a
e2

+ 8624
√

21 µ+ 168399
√

21 µ2 − Aσ
[
−85456

√
21 +

633864

a
+ 56

(
9335
√

21−

14406
µ

a

)
+ 9481146

√
21 µ2 − 57624

a
e2 (−11 + 14 µ)

]
+ 8 Aγ

(
147

(
−8
√

21

+
147

a

)
− 14

(
64
√

21 +
7203

a

)
µ+ 1077477

√
21 µ2 − 7203

a
e2 (−3 + 14 µ)

)]
.

(17)
and
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s2 =
1

3226944

[
−98

√
21

a

(
1 + e2

) (
−5488 + 47432 µ+ 157542 µ2

)
+ 7 Aσ

(
16464(

42 +
25
√

21

a

)
− 392

(
1764 + 2573

√
21

a

)
µ+ 7324086

√
21

a
µ2 +

√
21

a
e2

(
411600− 1008616µ+ 7324086 µ2

)
− 7 Aγ

(
−71344

√
21

a
+ 392

(
−1764 + 8339

√
21

a

)
µ+ 21978726

√
21

a
µ2 +

√
21

a
e2
(
−71344 + 3268888 µ+ 21978726 µ2

))
+ 6 a

√
21
(
−1 + e2

) (
Aσ
(
44688 + 165592 µ− 13661634 µ2

)
+ 14

(
−784 + 1624 µ

+ 128330 µ2

)
+ Aγ

(
−2352− 429352 µ+ 2817990 µ2

))
− 14

[
8

(
686

(
4
√

21− 21

a

)
− 14406

a
e2 + 8624

√
21 µ+ 168399

√
21 µ2 − Aσ

[
−392

(
218
√

21 +
1617

a

)
+ 56

(
9335

√
21 + 14406

1

a

)
µ+ 9481146

√
21 µ2 +

57624

a
e2 (−11 + 14 µ)

]
+ 8 Aγ

(
−147

(
8
√

21 +
147

a

)
− 14

(
64
√

21− 7203
1

a

)
µ+ 1077477

√
21

µ2 +
7203

a
e2 (−3 + 14 µ)

)]
.

(18)

It can be seen from equations (17) and (18) that the frequencies of the orbit of both short and
long periodic motions are affected by the prolateness coefficients of the primaries, the mass ratio,
the semi-major axis a, and the eccentricity e. as can be seen in the following illustrative graphs:

Figure 1.a. The variation of short-period
frequency versus mass parameter µ for different

values of the plorate triaxiality

Figure 1.b. The variation of long-period
frequency versus mass parameter µ for
different values of the plorate triaxiality

parameter
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Figure 2.a. Eccentricity effect on the short-period
frequency

Figure 2.b. Eccentricity effect on the long- period
frequency

Figure 3.a. The variations of s2 versus mass
parameter µ for different values of semi-major
axis (a = 0.90, 0.95, 0.99), with fixed values

of Aσ = −0.004, Aγ = −0.006, and e = 0.06

Figure 3.b. The variations of s1 versus the mass
parameter µ for different values of the semimajor
axis (a = 0.90, 0.95, 0.99), with fixed plorateness

triaxiality coefficients Aγ = −0.006,
Aσ = −0.004, and e = 0.06

Figure 4.a. Comparing the long-period frequency
for some selected cases with the classical case

Figure 4.b. Comparing the short-period frequency
for some selected cases with the classical case

Figs. 1a and 1b illustrate the variations of the two frequencies s2 and s1 for different values
of the prolateness coefficients Aσ, Aγ and e = 0.07, a = 0.94. Figs. 2a and 2b depict the
variations of the short- and long-periodic frequencies s2 and s1 with the mass ratio µ for different
values of the eccentricity of either primary (e = 0.05, 0.09, 0.4, Aσ = −0.06, Aγ = −0.04, and
a = 0.94). It is observed that, in the above mentioned curves, the short-period frequency s2 is
a decreasing function, while the long-period frequency s1 is an increasing one. Figs. 3a and

3b depict the variations of the long- ,and short periodic frequencies s1 and s2 with the mass
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parameter µ, for different values of the semi-major axis (a = 0.90, 0.95, 0.99). The figures show
that the long period frequency, s1, is an increasing function, while the short- period frequency,
s2 is a decreasing function. Figs. 4a, and 4b depict the variations in angular frequencies s1,

and s2 under the effect of the perturbation considered in comparison with the classical case. It
can be seen from both figures the effect of the perturbing forces on the behavior of the curves
representing the angular frequencies. The perturbing forces cause these curves to depart from
the classical case.

6. ELLIPTICAL ORBITS

The expansion of the amended potential function U about the triangular equilibrium points L4,5

is
U = UL4,5 + UL4,5

xx ξ2 + UL4,5
yy η2 + UL4,5

xy ξη +O(3) (19)

As we can see equation (19) is quadratic, thus, the periodic orbits around the libration points
L4,5 are elliptical, since the Hessian UxxUyy − U2

xy > 0.

6.1. Orientation of the principal axes of the ellipses
Equation (19) can be expressed in the form

U = L ξ2 +M ξ η +N η2 + U0 (20)

where

L =
−1

4
+

5

8 a
+

5 e2

8 a
+ Aσ

(
−3

4
+

33

16 a

(
1 + e2

)
+ µ

(
3

4
− 11

8 a

(
1 + e2

) ) )
+

Aγ

(
11

16

(
1 + e2

)
+

(
−3

4
+ µ

11

16 a

(
1 + e2

)))
,

(21)

M =

√
3

3

[
−1

2
+

11

4 a

(
1 + e2

)
+ µ

(
1− 11

2 a

(
1 + e2

))
+ Aγ

(
29

8 a

(
1 + e2

)
+(

5− 35

2 a

(
1 + e2

))
µ

)
+ Aσ

(
−5 +

111

8 a

(
1 + e2

)
+

(
5− 35

2 a

(
1 + e2

)))]
,

(22)

N =
1

4
+

7

8 a

(
1 + e2

)
+ Aσ

(
−3

4
+

59

16 a

(
1 + e2

))
+ µ

(
3

4
− 17

8 a

(
1 + e2

))
+

Aγ

(
25

16 a

(
1 + e2

)
+ µ

(
−3

8
+

17

8 a

(
1 + e2

)))
,

(23)

and

U0 =
2

3
− 5

27 a2
+

59

54 a
+

(
−10

27 a2
+

59

54 a

)
e2 − µ

2 a

(
1 + e2

)
+
µ2

2 a

(
1 + e2

)
+

Aσ

(
−23

54 a2
+

71

36 a
+ e2

(
−23

27 a2
+

71

36 a

)
−
(

1

6 a2
+

13

12 a
+

(
1

3 a2
+

13

12 a

)
e2
)
µ+

3

4 a

(
1 + e2

)
µ2

)
+ Aγ

(
−16

27 a2
+

59

36 a
+ e2

(
−32

27 a2
+

59

36 a

)
+

(
1

6 a2
− 5

12 a
+

(
1

3 a2
− 5

12 a

)
e2
)
µ+

3

4 a

(
1 + e2

)
µ2

)
(24)

ξ = ξ̄ cos θ − η̄ sin θ, η = ξ̄ sin θ + η̄ cos θ. (25)
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Hence, the new form of equation (20), is given as

U = L̄ ξ̄2 + N̄ η̄2 + Ū0

where L̄, N̄ , and Ū0 are new modified quantities. It is easily seen from equation (20) that the

periodic orbits around the triangular points L4,5 are elliptical. Setting the term that contains η̄ ξ̄
equal to zero, we have

tan 2 θ =
2 Uxy

Uxx − Uyy

tan 2 θ = ±
√

3

3 [4 a+ (1 + e2) (2 + Aσ (13− 6µ) + Aγ (7 + 6 µ))]

[(
1 + e2

) [
−22

− 29 Aγ − 111 Aσ + µ (44 + 140 (Aγ + Aσ))

]
+ 4 a

[
1 + 10 Aσ − 10 µ(

1

5
+ Aγ + Aσ

)]] (26)

where the plus sign (minus sign) refers to the centre of the ellipse at L4,5.

6.2. Eccentricities of the ellipses

In order to obtain the eccentricities of the ellipses, we use the equations Szebehely, (1967)

e1 = (1− α2
1)

1
2 (27)

e2 = (1− α2
2)

1
2 (28)

and

αi =
2si

s2i + λ̄1
=
s2i + λ̄2

2 si
(29)

where λ̄1 and λ̄2 are the roots of the characteristic equation. For i = 1, 2, with similar expression
for α2, we have
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α1 =
−1

3687936 a

√
350981 + 229771

√
7

3

[
392

√
−3 +

√
21
(
1 + e2

) (
28(

5838− 1274
√

21 +
(
−903 + 197

√
21
)
Aγ +

(
151431− 3305

√
21
)
Aσ

)
+(

−4091010 + 892738
√

21 +
(
−17969553 + 32921313

√
21
)
Aγ +

(
−8382927

+ 1829311
√

21

)
Aσ

)
µ

)
+ 48

√
−3 +

√
21

(
−2415 + 527

√
21 a2

(
−1 + e2

)
(196− 798 Aσ − 406 µ− 2957 Aσ µ+ Aγ (42 + 7667µ) ) + 21

√
2 a

5
2(

−2 + 3 e2
) (

336
(

74641
√

3− 48864
√

7
)
Aγ +

(
10727940055

√
3−

7023085617
√

7

)
Aγ µ+

(
−152436875591

√
3 + 99793363029

√
7
)
Aσ µ−

28

(
−1466864

√
3 + 960288

√
7 + 67642792

√
3 Aσ µ− 44282604

√
7 Aσ−

77585123
√

3 µ+ 50791389
√

7 µ

))
+ 9
√

2 a
7
2

(
−2 + 5 e2

) (
Aγ

(
29997212

√
3− 19637772

√
7 + 52699894653

√
3 µ− 34500179898

√
7 µ

)
+ 28

(
4895492

√
3− 3204852

√
7 + 422762921

√
3 µ− 276763308

√
7 µ

)
+ Aσ

(
−9040057628

√
3 + 5918107020

√
7− 10526335657773

√
3 µ+ 689111808570

√
7 µ

))
+

112

√
−3 +

√
21 a

(
56
(
−2415 + 527

√
21
)

(7 + 22 µ) + Aσ

(
−6938988+

1514212
√

21 + 25797723 µ− 5629555
√

21 µ

)
+ Aγ

(
405720− 88536

√
21−

2944578µ+ 642554
√

21 µ

))
+ 294

√
2 a

3
2

(
−2 + e2

) (
Aγ

(
1449028

√
3−

948612
√

7 + 235533725
√

3 µ− 154193028
√

7 µ

)
+ Aσ

(
−50296932

√
3

+ 32927076
√

7− 2310568225
√

3 µ+ 1512622056
√

7 µ

)
+ 28

(
70700

√
3−

46284
√

7 + 121
(

13097
√

3− 8574
√

7
)
µ

))]
.

(30)

Equation (26) determines the orientation of the orbits with respect to the rotational coordinate

system. It is observed that the orientation of the orbits is affected by the involved perturbations.
Equation (27) depicts, for i = 1, 2, the eccentricities of the short- and long- periodic orbits
around the triangular points L4,5.
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Figure. 5.a. Comparing the eccentricity of long
period motion in the classical with a selected

perturbed case.

Figure 5.b. Comparing the eccentricity of short-
period motion in the classical with a selected

perturbed case.

We can observe that, from Fig. 5a, and 5b, the eccentricity of the long-period orbit decreases
under the effect of the perturbations, while the eccentricity of the short-period one increases.
Also, we see from the figures that the perturbed case are shifted from the classical case because
of the influence of the disturbing forces. Ignoring all the perturbations considered in the present
work, our results will be the same as those obtained by Szebehely, (1967).

7. CONCLUSIONS

In this work, we have investigated the periodic orbits around the triangular libration points L4,5,
in the range 0 < µ < µc. We formulated the problem in a more general way and used a more
complex mathematical model than previously published papers that considered the classical case
(Abouelmagd and Mostafa, 2015). The prolateness coefficients of both primaries are taken into
account as a perturbing force. We investigated the variations of the angular frequencies for the
long and the short periodic orbits. The variation of both frequencies is represented graphically
versus the mass parameter µ for distinct values of the included perturbations. It is found that for
small mass ratio µ, an increment in the perturbing forces results in a decrease in the frequency of
the short-period orbit, while an increment in the same parameters will increase the frequency
of the long-period one. Both frequencies coincide at the critical value of the mass parameter
µc. In addition, we derived explicit expressions for the eccentricities e1 and e2 of the long and
short-period orbits. We represented graphically both eccentricities versus the mass parameter.
It is found that the eccentricities e1 and e2 of the long and short-period orbits are decreasing
and increasing functions, respectively. Furthermore, we studied the orientation of the principle
axes of the ellipses. It is observed that the included perturbing forces influence the orientation
of the principal axes. The perturbing forces result in a change in the inclination angle of the
orbits. Finally, in our opinion, we believe that the current research has special importance to
space science applications to send spacecraft into stable regions in planetary systems.
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