PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reforming parowy glicerolu na katalizatorach Ni-Re/α-Al2O3

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Glycerol steam reforming over Ni-Re/α -Al2O3 catalysts
Języki publikacji
PL EN
Abstrakty
PL
W reakcji transestryfikacji otrzymywania tzw. biodiesla powstają duże ilości odpadowej frakcji glicerynowej. Jednym z możliwych sposobów jej zagospodarowania jest konwersja do gazów syntezowych. Zbadano możliwość wykorzystania katalizatorów niklowych modyfikowanych renem w reakcji reformingu parowego glicerolu. Katalizatory te okazały się aktywne i stabilne w procesie reformingu parowego metanu oraz reformingu metanu z dwutlenkiem węgla. Zawartość renu w katalizatorach wynosiła maksymalnie 4% wag., temperatura reakcji mieściła się w zakresie 650–800°C, a stosunek molowy pary do węgla w mieszaninie glicerol-woda wynosił S/C = 3. Dodatek renu wpłynął pozytywnie na właściwości katalizatora, takie jak aktywność w konwersji glicerolu i produkcja wodoru. Najbardziej obiecujące wyniki uzyskano dla układu zawierającego 1% wag. Re. Wykazano, że katalizatory Ni-Re mogą być użyteczne w produkcji gazu syntezowego o wysokim stosunku CO:H2.
EN
Large amount of glycerol waste fraction is still produced during biodiesel synthesis through the transesterification reaction. One of possible ways of its utilization seems to be conversion to synthesis gas. A steam reforming of glycerol on the rhenium doped nickel catalysts, supported on the commercial alumina oxide, was evaluated. The catalysts previously show good activity and stability in the methane steam reforming and CO2 methane reforming. Rhenium content was changed up to 4 wt.%, temperatures range of the reforming reaction was 650-800°C with S/C = 3. Rhenium addition show significant influence on catalysts properties, such as activity in glycerol conversion and hydrogen production. The most promising results were obtained for Ni/Al2O3 catalyst with 1 wt.% rhenium addition. Ni-Re catalyst proved to be useful in syngas generation with high CO: H2 ratio.
Czasopismo
Rocznik
Strony
261--269
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Zakład Technologii Chemicznej, Wydział Chemii, Uniwersytet Marii Curie-Skłodowskiej, Lublin
  • Zakład Technologii Chemicznej, Wydział Chemii, Uniwersytet Marii Curie-Skłodowskiej, Lublin
Bibliografia
  • 1. Biofuels OECD-FAO Agricultural Outlook 2015, OECD Publishing, Paris. http://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agriculturaloutlook-2015/biofuels_agr_outlook-2015-13-en;jsessionid=16npswsg2y-cjz.x-oecd-live-02 Accessed October 2015.
  • 2. Deutscher J., Sauerwald H.: Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system. J Bacteriol 1986, 166, 3, 829-836.
  • 3. Hettwer J., Oldenburg H., Flachsel E.: Enzymic routes to dihydroxyacetone phosphate or immediate precursors. J Mol Catal B: Enzym 2002, 19–20, 215-222.
  • 4. Wang K., Hawley M.C., DeAthos S.: Conversion of glycerol to 1,3-propanediol via selective dihydroxylation. J Ind Eng Chem Res. 2003, 42, 13, 2913-2923.
  • 5. Zeng P.: Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum. Bioprocess Eng 1996, 14, 4, 169-175.
  • 6. Saint-Aman S., Perlot P., Goma G., Soucaille P.: High production of 1,3-propanediol from glycerol by Clostridium butyricum VPI 3266 in a simply controlled fed-batch system. Biotechnol Lett 1994, 16, 8, 831-836.
  • 7. Rokicki G., Rakoczy P., Parzuchowski P., Sobiecki M.: Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chem 2005, 7, 529-539.
  • 8. Clacens J.M., Pouilloux Y., Barrault J.: Synthesis and modification of basic mesoporous materials for the selective etherification of glycerol. Stud Surf Sci Catal 2002, 143, 687-695.
  • 9. Blanco M., Beneyto R., Castillo M., Porcel M.: Analytical control of an esterification batch reaction between glycerine and fatty acids by near-infrared spectroscopy. Anal Chim Acta 2004, 521, 2, 143-148.
  • 10. Macierzanka A., Szeląg H.: Esterification kinetics of glycerol with fatty acids in the presence of zinc carboxylates: preparation of modified acylglycerol emulsifiers. Ind Eng Chem Res 2004, 43, 24, 7744-7753.
  • 11. Ott L., Bicker M., Vogel H.: Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production. Green Chem 2006, 8, 214-220.
  • 12. Zhou C.H., Zhao H., Tong D.S., Wu L.M., Yu W.H.: Recent advances in catalytic conversion of glycerol. Cat Rev Sci Eng 2013, 55, 4, 369-453.
  • 13. Gupta M., Kumar N.: Scope and opportunities of using glycerol as an energy source. Renew Sust En Rev 2012, 16, 7, 4551-4556.
  • 14. Tran N.H., Kannangara G.S.K.: Conversion of glycerol to hydrogen rich gas. Chem Soc Rev 2013, 42, 9454-9479.
  • 15. Cortright R.D., Davda R.R., Dumesic J.A.: Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 2002, 418, 964-967.
  • 16. Dauenhauer P.J., Salge J.R., Schmidt L.D.: Renewable hydrogen by autothermal steam reforming of volatile carbohydrates. J Catal 2006, 244, 2, 238-247.
  • 17. Byrd J., Pant K.K., Gupta R.B.: Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel 2008, 87, 13-14, 2956-2960.
  • 18. Cichy M., Borowiecki T.: Reforming parowy gliceryny. Przem Chem 2009, 9, 995-1005.
  • 19. Lin Y.-Ch.: Catalytic valorization of glycerol to hydrogen and syngas. Int J Hydrogen Energy 2013, 38, 6, 2678-2700.
  • 20. Hirai T., Ikenaga N.O., Miyake T., Suzuki T.: Production of hydrogen by steam reforming of glycerin on ruthenium catalyst. Energy Fuels 2005, 19, 4, 1761-1762.
  • 21. Adhikari S., Fernando S., Haryanto A.: Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catal Today 2007, 129, 355-364.
  • 22. Zhang B., Tang X., Li Y., Xu Y., Shen W.: Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int J Hydrogen Energ 2007, 32, 2367-2373.
  • 23. Zhang B., Tang X., Li Y., Cai W., Xu Y., Shen W.: Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catal Commun 2006, 7, 6, 367-372.
  • 24. Swami S.M., Abraham M.A.: Integrated catalytic process for conversion of biomass to hydrogen. Energ Fuel 2006, 20, 6, 2616-2622.
  • 25. Douette M.D., Turn S.Q., Wang W., Keffer V.I.: Experimental investigation of hydrogen production from glycerin reforming. Energ Fuel 2007, 21, 6, 3499-3504.
  • 26. Kunkes L., Simonetti D.A., Dumesic J.A., Pyrz W.D., Murillo L.E., Chen J.G., Buttrey D.J.: The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts. J Catal 2008, 260, 164-177.
  • 27. Simonetti D.A., Kunkes E.L., Dumesic J.A.: Gas-phase conversion of glycerol to synthesis gas over carbon-supported platinum and platinum-rhenium catalysts. J Catal 2007, 247, 2, 298-306.
  • 28. Iriondo A., Barrio V.L., Cambra J.F., Arias P.L., Guemez M.B., Navarro R.M., Sanchez-Sanchez M.C., Fierro J.L.G.: Influence of La2O3 modified support and Ni and Pt active phases on glycerol steam reforming to produce hydrogen. Catal Commun 2009, 10, 1275-1278.
  • 29. Slinn M., Kendall K., Mallon C., Andrews J.: Steam reforming of biodiesel by-product to make renewable hydrogen. Bioresour Technol 2008, 99, 13, 5851-5858.
  • 30. Adhikari S., Fernando S., Haryanto A.: A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glycerine. Energy Fuels 2007, 21, 4, 2306-2310.
  • 31. Soares R.R., Simonetti D.A., Dumesic J.A.: Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Edit 2006, 45, 24, 3982-3985.
  • 32. Czernik S., French R., Feik C., Chornet E.: Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ing Eng Chem Res 2002, 41, 17, 4209-4215.
  • 33. Adhikari S., Fernando S.D., Haryanto A.: Hydrogen production from glycerin by steam reforming over nickel catalysts. Renewable Energy 2008, 33, 5, 1097-1100.
  • 34. Adhikari S., Fernando S.D., Haryanto A.: Kinetics and reactor modelling of hydrogen production from glycerol via steam reforming process over Ni/CeO2 catalysts. Chem Eng Technol 2009, 32, 4, 541-547.
  • 35. Borowiecki T., Ryczkowski J.: Promoters of the catalysts for methane conversion into synthesis gases. In L.P. Bevy (Ed.), Focus on Catalysis Research. Nova Science Publishers Inc., 2006, pp. 101-146.
  • 36. Wang L., Murata K., Inaba M.: Control of the product ratio of CO2/(CO- +CO2) and inhibition of catalyst deactivation for steam reforming of gasoline to produce hydrogen. Appl Catal B: Environ 2004, 48, 4, 243-248.
  • 37. Wang L., Murata K., Inaba M.: Development of novel highly active and sulphur-tolerant catalysts for steam reforming of liquid hydrocarbons to produce hydrogen. Appl Catal A: Gen 2004, 257, 1, 43-47.
  • 38. Borowiecki T., Denis A., Pańczyk M., Gac W., Stołecki K.: Steam reforming of methane on the Ni-Re catalysts. Pol J Chem 2008, 82, 9, 1733-1742.
  • 39. Kunkes E.L., Soares R.S., Simonetti D.A., Dumesic J.A.: An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl Catal B: Environ 2009, 90, 3-4, 693-698.
  • 40. King D.L., Zhang L., Xia G., Karim A.M., Heldebrant D.J., Wang X., Peterson T., Wang Y.: Aqueous phase reforming of glycerol for hydrogen production over Pt–Re supported on carbon. Appl Catal B: Environ 2010, 99, 1-2, 206–213.
  • 41. Zhang L., Karim A.M., Engelhard M.H., Wei Z., King D.L., Wang Y.: Correlation of Pt–Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol. J Catal 2012, 287, 37–43.
  • 42. Ciftci A., Ligthart D.A.J.M., Sen A.O., van Hoof A.J.F., Friedrich H., Hensen E.J.M.: Pt-Re synergy in aqueous-phase reforming of glycerol and the water–gas shift reaction. J Catal 2014, 311, 88-101.
  • 43. Wei Z., Karim A.M., Li Y., King D.L., Wang Y.: Elucidation of the roles of Re in steam reforming of glycerol over Pt–Re/C catalysts. J Catal 2015, 322, 49-59.
  • 44. Bartholomew C.H., Farrauto J.R.: Chemistry of nickel-alumina catalysts. J Catal 1976, 45, 41–53.
  • 45. Mustard D.G., Bartholomew C.H.: Determination of metal crystallite size and morphology in supported nickel catalysts. J Catal 1981, 67, 1, 186-206.
  • 46. Bergeret G., Gallezot P.: Particle size and dispersion measurments. In G. Ertl, H. Knozinger, J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, Wiley-VCH, 1997, pp. 439-464.
  • 47. Okal J.: A study of effect of particle size on the oxidation of rhenium in the Re/γ-Al2O3 catalysts. Appl Catal A: Gen 2005, 287, 2, 214-220.
  • 48. Adhikari S., Fernando S.D., To S.D.F., Bricka R.M., Steele P.H., Haryanto A.: Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energ Fuel 2008, 22, 2, 1220-1226.
  • 49. Adhikari S., Fernando S.D., Haryanto A.: Hydrogen production from glycerol: An update. Energ Convers Manage 2009, 50, 10, 2600-2604.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2e5c4f6-0b6b-4dbe-bc39-b468fe715e85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.