PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Emission analysis of liquefied natural gas and diesel heavy-duty trucks using on-board monitoring method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Environmental protection and the reduction of greenhouse gas (GHG) emissions are becoming top priorities in the mobility sector especially in heavy-duty truck (HDT) sector. In recent years, numerous regulations, targets, and initiatives have been introduced, all of which strongly promote the reduction of carbon-dioxide (CO2) emissions, the adoption of eco-friendly alternatives, and the use of renewable energy sources. The study compares CO2 emissions and fuel consumption between conventional diesel and liquefied natural gas (LNG) heavy-duty vehicles (HDVs) from the same original equipment manufacturer (OEM). The research was conducted on multiple levels, with a primary focus on control based on test track measurements. This was preceded by a simulation phase and followed by public road measurement-based validation process. In this study, we used the onboard monitoring (OBM) emission analysis method, a cost-effective and accurate process where data was recorded from the fleet management system (FMS) using controller area network (CAN) messages. The results are presented in several stages from simulation to data validation. Our research represents a unique study in the field of HDVs, as the measurements were conducted on a test track, supported by simulations and public road tests. The results of the project clearly demonstrate that gas technology can contribute to reducing GHG emissions in HDVs, and LNG provides a reliable alternative for long-distance transportation.
Rocznik
Strony
258--271
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Zalaegerszeg Innovation Park, Széchenyi István University, Dr. Michelberger Pál street 3., H-8900 Zalaegerszeg
  • Zalaegerszeg Innovation Park, Széchenyi István University, Dr. Michelberger Pál street 3., H-8900 Zalaegerszeg
  • Zalaegerszeg Innovation Park, Széchenyi István University, Dr. Michelberger Pál street 3., H-8900 Zalaegerszeg
Bibliografia
  • 1. Anderhofstadt, B., and Spinler, S. [2020]. Preferences for autonomous and alternative fuel-powered heavy-duty trucks in Germany. Transportation Research Part D: Transport and Environment, 79. https://doi.org/10.1016/j.trd.2020.102232
  • 2. Arteconi, A., Brandoni, C., Evangelista, D., and Polonara, F. [2010]. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe. Applied Energy, 87(6), 2005–2013. https://doi.org/10.1016/j.apenergy.2009.11.012
  • 3. Aryanpur, V., and Rogan, F. [2024]. Decarbonising road freight transport: The role of zero-emission trucks and intangible costs. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-52682-4
  • 4. Askin, A. C., Barter, G. E., West, T. H., and Manley, D. K. [2015]. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs. Energy Policy, 81, 1–13. https://doi.org/10.1016/j.enpol.2015.02.005
  • 5. Bishop, G. A., Stedman, D. H., Bishop, G. A., and Stedman, D. H. [2012]. Remote Measurements of On-Road Emissions from Heavy-Duty Diesel Vehicles in California; Year 5, 2012. Retrieved from Denver website: https://digitalcommons.du.edu/feat_publications
  • 6. Caban, J., and Ignaciuk, P. [2018]. Technical-economic aspects of cng gas usage in Buses of Urban communication. Engineering for Rural Development, 17, 2129–2133. https://doi.org/10.22616/ERDev2018.17.N483
  • 7. Cunanan, C., Tran, M. K., Lee, Y., Kwok, S., Leung, V., and Fowler, M. [2021, June 1]. A review of heavy duty vehicle powertrain technologies: diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technologies, 3, 474–489. https://doi.org/10.3390/cleantechnol3020028
  • 8. Di Maio, D., Beatrice, C., Fraioli, V., Napolitano, P., Golini, S., and Rutigliano, F. G. [2019]. Modeling of three-way catalyst dynamics for a compressed natural gas engine during lean-rich transitions. Applied Sciences (Switzerland), 9(21). https://doi.org/10.3390/app9214610
  • 9. European Commission. [2023]. European Green Deal: Commission proposes 2030 zero-emissions target for new city buses and 90% emissions reductions for new trucks by 2040. Retrieved from https://ec.europa.eu/commission/presscorner/detail/en/ip_23_762
  • 10. European Parliament: [2019]. Regulation (EU) 2019/1242 of the European Parliament and of the Council of 20 June 2019 setting CO2 emission performance standards for new heavy-duty vehicles and amending Regulations. Official Journal of the European Union, 62. Retrieved from https://eur-lex.europa.eu/eli/reg/2019/1242/oj270
  • 11. Giuliano, G., Dessouky, M., Dexter, S., Fang, J., Hu, S., and Miller, M. [2021]. Heavy-duty trucks: The challenge of getting to zero. Transportation Research Part D: Transport and Environment, 93. https://doi.org/10.1016/j.trd.2021.102742
  • 12. Gnap, J., and Dočkalik, M. [2021]. Impact of the operation of LNG trucks on the environment. Open Engineering, 11(1), 937–947. https://doi.org/10.1515/eng-2021-0096
  • 13. Gy. Dezsényi, I. Emőd, and L. Finichiu. [1999]. Internal Combustion Engines Design and Testing (Dr. Dezsényi György, Ed.). Budapest: National Textbook Publisher.
  • 14. Hao, L., Ren, Y., Lu, W., Jiang, N., Ge, Y., and Wang, Y. [2023]. Assessment of heavy-duty diesel vehicle NOx and CO2 emissions based on OBD data. Atmosphere, 14(9). https://doi.org/10.3390/atmos14091417
  • 15. International Energy Agency (IEA). [2023, June 26]. Global CO2 emissions from trucks and buses in the Net Zero Scenario. Retrieved 26 March 2024, from https://www.iea.org/data-and-statistics/charts/global-co2-emissions-from-trucks-and-buses-in-the-net-zero-scenario-2000-2030
  • 16. Isermann, R. [2014]. Engine modeling and control: Modeling and electronic management of internal combustion engines. In Engine Modeling and Control: Modeling and Electronic Management of Internal Combustion Engines 9783642399343. https://doi.org/10.1007/978-3-642-39934-3
  • 17. Jahaniaghdam, T., Mamdoohi, A. R., Kheyrabadi, S. A., Mehryar, M., and Ciari, F. [2023]. Preferences for alternative fuel trucks among international transport companies. World, 4(4), 795–815. https://doi.org/10.3390/world4040050
  • 18. Jin, T., Lu, K., Liu, S., Zhao, S., Qu, L., and Xu, X. [2017]. Chemical characteristics of particulate matter emission from a heavy-duty diesel engine using ETC cycle dynamometer test. Aerosol and Air Quality Research, 17(2), 406–411. https://doi.org/10.4209/aaqr.2016.06.0264
  • 19. Krause, J., Arcidiacono, V., Maineri, L., Broekaert, S., and Fontaras, G. [2023]. Calculating heavy-duty vehicle CO2 emission reduction costs for Green Deal scenarios: Extension of the DIONE model. Transportation Research Procedia, 72, 2597–2603. https://doi.org/10.1016/j.trpro.2023.11.788
  • 20. Kulikov, I., Kozlov, A., Terenchenko, A., and Karpukhin, K. [2020]. Comparative study of powertrain hybridization for heavy-duty vehicles equipped with diesel and gas engines. Energies, 13(8). https://doi.org/10.3390/en13082072
  • 21. Kumar, S., Kwon, H. T., Choi, K. H., Lim, W., Cho, J. H., Tak, K., and Moon, I. [2011]. LNG: An eco-friendly cryogenic fuel for sustainable development. Applied Energy, 88, 4264–4273. https://doi.org/10.1016/j.apenergy.2011.06.035
  • 22. Littera, D., Cozzolini, A., Besch, M., Carder, D., and Gautam, M. [2017]. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies. Atmospheric Environment, 162, 31–44. https://doi.org/10.1016/j.atmosenv.2017.05.013
  • 23. Schwarzkopf M.E. [2019]. Investigating the introduction of alternative tractor-trailers in Hungary (Thesis). Budapest University of Technology and Economics, Budapest, Hungary.
  • 24. Osorio-Tejada, J. L., Llera-Sastresa, E., and Scarpellini, S. [2017]. Liquefied natural gas: Could it be a reliable option for road freight transport in the EU? Renewable and Sustainable Energy Reviews, 71, 785–795. https://doi.org/10.1016/j.rser.2016.12.104
  • 25. Ou, X., and Zhang, X. [2013]. Life-cycle analyses of energy consumption and GHG emissions of natural gas-based alternative vehicle fuels in China. Journal of Energy, 1–8. https://doi.org/10.1155/2013/268263
  • 26. Pfoser, S., Schauer, O., and Costa, Y. [2018]. Acceptance of LNG as an alternative fuel: Determinants and policy implications. Energy Policy, 120, 259–267. https://doi.org/10.1016/j.enpol.2018.05.046
  • 27. Quiros, D. C., Smith, J., Thiruvengadam, A., Huai, T., and Hu, S. [2017]. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport. Atmospheric Environment, 168, 36–45. https://doi.org/10.1016/j.atmosenv.2017.08.066
  • 28. Ribberink, H., Wu, Y., Lombardi, K., and Yang, L. [2021]. Electrification opportunities in the medium- and heavy-duty vehicle segment in Canada. World Electric Vehicle Journal, 12(2). https://doi.org/10.3390/wevj12020086
  • 29. Robin Vermeulen, A., Verbeek, R., and van Goethem, S. [2017]. Emissions testing of two Euro VI LNG heavy-duty vehicles in the Netherlands: tankto-wheel emissions. Retrieved from www.tno.nl
  • 30. Rodrigues Teixeira, A. C., Borges, R. R., Machado, P. G., Mouette, D., and Dutra Ribeiro, F. N. [2020]. PM emissions from heavy-duty trucks and their impacts on human health. Atmospheric Environment, 241. https://doi.org/10.1016/j.atmosenv.2020.117814
  • 31. Šarkan, B., Kuranc, A., Sejkorova, M., Caban, J., and Loman, M. [2022]. Comparison of the exhaust emissions of heavy-duty vehicle engines powered by diesel fuel (DF) and natural gas (LNG) in real operation conditions. Przemysł Chemiczny, 1(1), 39–43. https://doi.org/10.15199/62.2022.1.2
  • 32. Selleri, T., Gioria, R., Melas, A. D., Giechaskiel, B., Forloni, F., Villafuerte, P. M., … Suarez-Bertoa, R. [2022]. Measuring emissions from a demonstrator heavy-duty diesel vehicle under real-world conditions—moving forward to Euro VII. Catalysts, 12(2). https://doi.org/10.3390/catal12020184
  • 33. Smajla, I., Sedlar, D. K., Drljača, B., and Jukić, L. [2019]. Fuel switch to LNG in heavy truck traffic. Energies, 12(3). https://doi.org/10.3390/en12030515
  • 34. Sugihara, C., Hardman, S., and Kurani, K. [2023]. Social, technological, and economic barriers to heavy-duty truck electrification. Research in Transportation Business and Management, 51. https://doi.org/10.1016/j.rtbm.2023.101064
  • 35. Thiruvengadam, A., Besch, M., Padmanaban, V., Pradhan, S., and Demirgok, B. [2018]. Natural gas vehicles in heavy-duty transportation – A review. Energy Policy, 122, 253–259. https://doi.org/10.1016/j.enpol.2018.07.052
  • 36. Toumasatos, Z., Zhu, H., Durbin, T. D., Johnson, K. C., Cao, S., and Karavalakis, G. [2024]. Real-world particulate, GHG, and gaseous toxic emissions from heavy-duty diesel and natural gas vehicles. Atmospheric Environment, 327. https://doi.org/10.1016/j.atmosenv.2024.120512
  • 37. Van Kranenburg, K., Van Delft, Y., Gavrilova, A., De Kler, R., Schipper, C., Smokers, R., Verbeek, M., and Verbeek, R. [2020]. E-Fuels: Towards a More Sustainable Future for Truck Transport, Shipping and Aviation. Retrieved from https://www.tno.nl/publish/pages/3735/vankranenburg-2020-efuels.pdf
  • 38. Wang, X., Song, G., Zhai, Z., Wu, Y., Yin, H., and Yu, L. [2021]. Effects of vehicle load on emissions of heavy-duty diesel trucks: A study based on real world data. International Journal of Environmental Research and Public Health, 18(8). https://doi.org/10.3390/ijerph18083877
  • 39. Williams, M., and Minjares, R. [2016]. A technical summary of Euro 6/VI vehicle emission standards. Retrieved from www.theicct.org
  • 40. Zhao, Q., Huang, W., Hu, M., Xu, X., and Wu, W. [2021]. Characterizing the economic and environmental benefits of lng heavy-duty trucks: A case study in shenzhen, china. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132413522
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2e56d55-48a2-4788-9e2c-8b2dc627d72c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.