Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The lower wing section of an aircraft is considered particularly vulnerable to fatigue failure due to the presence of inspection holes, which create stress concentrations and increase local stress in the surrounding material. This study estimates the fatigue life of the lower wing structure, including rivet holes around the inspection openings, in a new-generation Indonesian short take-off and landing (STOL) aircraft under cyclic flight loads. Fatigue assessment was conducted in five stages: (1) development of a 3D design model of the lower wing skin; (2) stress analysis of the skin without rivet holes, using finite element analysis (FEA), to identify critical areas around the inspection hole; (3) stress analysis of the skin with rivet holes in these critical areas; (4) compilation of a stress spectrum from flight test data; and (5) fatigue life estimation using the cumulative damage method with the application of a scatter factor. The analysis results indicate a maximum fatigue life of 67,750 flight cycles for rivet holes in the lower wing skin, exceeding the industry target of 30,000 cycles. However, when a scatter factor is applied, the maximum fatigue life is reduced to 13,550 flight cycles, establishing the required inspection threshold for the STOL aircraft.
Czasopismo
Rocznik
Tom
Strony
75--88
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr., wzory
Twórcy
autor
- Department of Mechanical Engineering, Republic of Indonesia Defense University, IPSC Area, Bogor 16810, Indonesia
autor
- Department of Mechanical Engineering, Republic of Indonesia Defense University, IPSC Area, Bogor 16810, Indonesia
autor
- Department of Mechanical Engineering, Republic of Indonesia Defense University, IPSC Area, Bogor 16810, Indonesia
autor
- Department of Mechanical Engineering, Republic of Indonesia Defense University, IPSC Area, Bogor 16810, Indonesia
autor
- Division of Design and Structural Analysis, Indonesian Aerospace, Bandung 40174, Indonesia
Bibliografia
- Aziz, A., Jusuf, A., Rahardjo, B., Putra, I. S., Setiawan, H., & Sugiono, A. (2022). Analisis perkiraan umur struktur center wing box pada pesawat Hercules C-130H akibat beban Lelah [Fatigue life estimation of the center wing box structure on a Hercules C-130H aircraft due to fatigue loads] Warta Ardhia, 48(1), 43-52. [in Indonesian] https://doi.org/10.25104/wa.v48i1.442.43-52
- Dewa, R. T., & Kepka, M. (2021). Improved extrapolation method for the fatigue damage of bus structural steel under service loading. Journal of Mechanical Science and Technology, 35(10), 4437-4442. https://doi.org/10.1007/s12206-021-0914-4
- Dewa, R. T., Ekaputra, I. M. W., Kepka, M., & Adinata, D. M. (2023). Spectral-based fatigue life analysis of bus structural steels with different nodes and operating tracks. Engineering Transactions, 71(2), 229-240. https://doi.org/10.24423/EngTrans.3072.20230418
- Fatemi, A. (2009). Variable amplitude loading (Chapter 9). eFatigue training materials. University of Toledo. https://www.efatigue.com/training/Chapter_9.pdf
- Fatemi, A. (2010). Multiaxial fatigue (Chapter 10). eFatigue training materials. University of Toledo. https://www.efatigue.com/training/Chapter_10.pdf
- Federal Aviation Administration. (2024). Metallic materials properties development and standardization (MMPDS-2024). U.S. Department of Transportation.
- Hendra, E. (2013). Analisa defleksi struktur tower transmisi menggunakan metode elemen hingga [Analysis of transmission tower structure deflection using the finite element method]. Jurnal Rekayasa Mesin, 3(2), 362-371. [in Indonesian] https://doi.org/10.21776/jrm.v3i2.160
- Huth, H. (1986). Influence of fastener flexibility on the prediction of load transfer and fatigue life for multiple-row joints. In Fatigue in mechanically fastened composite and metallic joints. ASTM International. https://doi.org/10.1520/STP37036S
- Kasim, M. Z. b. M. (2015). Fatigue life analysis of holed component in aircraft structures (bachelor’s thesis). Universiti Teknologi PETRONAS. https://utpedia.utp.edu.my/16242/1/final%20report%20completed.pdf
- Konieczny, M., Gasiak, G., & Achtelik, H. (2019). The FEA and experimental stress analysis in circular perforated plates loaded with concentrated force. Fracture and Structural Integrity, 14(51), 164-173.
- Liao, M., Renaud, G., & Bombardier, Y. (2020). Airframe digital twin technology adaptability assessment and technology demonstration. Engineering Fracture Mechanics, 225, 106793. https://doi.org/10.1016/j.engfracmech.2019.106793
- Maksimović, S. (2005). Fatigue life analysis of aircraft structural components. Scientific-Technical Review, 5(1). https://vti.mod.gov.rs/ntp/rad2005/1-05/maks/maks.pdf
- MSC Software Corporation. (2024). MSC Patran: Material library [Computer software]. Hexagon AB. https://www.mscsoftware.com/product/patran
- Talreja, R., & Phan, N. (2019). Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage. Composite Structures, 219, 1-7. https://doi.org/10.1016/j.compstruct.2019.03.052
- Tavares, S. M. O., & De Castro, P. M. S. T. (2017). An overview of fatigue in aircraft structures. Fatigue & Fracture of Engineering Materials & Structures, 40(10), 1510-1529. https://doi.org/10.1111/ffe.12631
- Teng, T. L., & Chang, P. H. (2003). Fatigue crack initiation life prediction for a flat plate with a central hole. Journal of Chung Cheng Institute of Technology, 32(1).
Uwagi
This research was carried out in the Indonesian Aerospace and as a part of research collaboration with the Republic of Indonesia Defense University under Ministry of Defense partnership program.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2e0a7e6-1ce2-4a64-98ad-0848ea4d423f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.