PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Shape of Eigen-Forms of Columns Under Non-Conservative Loads

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In many structures of civil engineering, rotating machinery, flying objects with rocket propulsion and other systems, problems of stability arise and have to be addressed. The optimal cross-section layout in maximization of critical loads of such systems needs a deep knowledge concerning their modal properties and stability behavior, to enable one to effectively control them. The present paper is devoted to discussion of the relations between the eigenfrequencies and the eigen-modes of selected discrete and continuous models of columns subjected to conservative and non-conservative follower loads.
Słowa kluczowe
Rocznik
Strony
31--44
Opis fizyczny
Bibliogr. 9 poz., il., wykr.
Twórcy
autor
  • Warsaw University of Technology, Institute of Vehicles
autor
  • Warsaw University of Technology, Institute of Machine Design Fundamentals
Bibliografia
  • 1. Beck, M. (1952). Die knicklast des einseitig eingespannten, tangential gedrückten stabes (the buckling load of the cantilevered, tangentially loaded rod). Zeitschrift für Angewandte Mathematik und Physik ZAMP, 3(3):225–228.
  • 2. Bogacz, R. and Frischmuth, K. (2005). Transient behaviour of columns under follower forces. Machine Dynamics Problems, 29(4):7–20.
  • 3. Bogacz, R., Irretier, H., and Mahrenholtz, O. (1979). Optimal design of structures under nonconservative forces with stability constraints. Proceedings of Euromech Colloquium 11, 112:43–65.
  • 4. Claudon, J. (1975). Characteristic curves and optimum design of two structures subjected to circulatory loads (flutter in elastic cantilever columns). Journal de Mecanique, 14(3):531–543.
  • 5. Elishakoff, I. (2005). Controversy associated with the so-called “follower forces”: critical overview. Applied Mechanics Reviews, 58(2):117–142.
  • 6. Gajewski, A. and Zyczkowski, M. (1988). Optimal structural design under stability constraints, volume 13. Kluwer, Dordrecht.
  • 7. Iooss, G. and Joseph, D. D. (1980). Elementary stability and bifurcation theory. Springer, Berlin.
  • 8. Kurnik, W. and Bogacz, R. (2013). Ziegler problem revisited–flutter and divergence interactions in a generalized system. Machine Dynamics Research, 37(4):71–84.
  • 9. Ziegler, H. (1952). Die stabilitätskriterien der elastomechanik. Ingenieria, 20(1):49–56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2d32183-a5de-4c66-bfdf-839c563174c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.