PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of humidity on carbon dioxide adsorptionon zeolite 13X

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Greenhouse gases such as carbon dioxide and water vapour can be captured from gas streams ona zeolite 13X adsorbent. Experimental water vapour adsorption isotherms and kinetic curves weremeasured in the temperature range of 293–393 K and pressure up to 2100 Pa. The equilibrium datawere developed with Toth and Sips multi-temperature isotherm models. The results of the processrate studies were described using pseudo-first and pseudo-second order kinetic models. Findings werecompared with our own results of CO2adsorption studies on the same zeolite
Rocznik
Strony
197--–208
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology,Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology,Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology,Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Ayawei N., Ebelegi A.N., Wankasi D., 2017. Modelling and interpretation of adsorption isotherms. Hindawi J. Chem., 3039817. DOI: 10.1155/2017/3039817.
  • 2. Ben-Mansour R., Habib M.A., Bamidele O.E., Basha M., Qasem N.A.A., Peedikakkal A., Laoui T., Ali M., 2016. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review. Appl. Energy, 161, 225–255. DOI: 10.1016/j.apenergy.2015.10.011.
  • 3. Brandani F., Ruthven D.M., 2004. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind. Eng. Chem. Res., 43, 8339–8344. DOI: 10.1021/ie040183o.
  • 4. Costa E., Calleja G., Jimenez A., Pau J., 1991. Adsorption equilibrium of ethylene, propane, propylene, carbon dioxide, and their mixtures on 13X zeolite. J. Chem. Eng. Data, 36, 218–224. DOI: 10.1021/je00002a020.
  • 5. Do D.D., 1998. Adsorption analysis: Equilibria and kinetics. Imperial College Press.
  • 6. Hefti M., Marx D., Joss L., Mazzotti M., 2014. Model-based process design of adsorption processes for CO2 capture in the presence of moisture. Energy Procedia, 63, 2152–2159. DOI: 10.1016/j.egypro.2014.11.234.
  • 7. Hefti M., Mazzotti M., 2018. Postcombustion CO2 capture from wet flue gas by temperature swing adsorption. Ind. Eng. Chem. Res., 57, 15542–15555. DOI: 0.1021/acs.iecr.8b03580.
  • 8. Keller J., Staudt R., 2005. Gas adsorption equilibria: Experimental methods and adsorption isotherms. Springer.
  • 9. Kim J.H., Lee C.H., Kim W.S., Lee J.S., Kim J.T., Suh J.K., Lee J.M., 2003. Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite X/activated carbon composite. J. Chem. Eng. Data, 48, 137–141. DOI: 10.1021/je0201267.
  • 10. Kim K.-M., Oh H.-T., Lim S.-J., Ho K., Park Y., Lee C.-H., 2016. Adsorption equilibria of water vapor on zeolite 3A, Zeolite 13X, and dealuminated Y zeolite. J. Chem. Eng. Data, 61, 1547–15554. DOI: 10.1021/acs.jced.5b00927.
  • 11. Lee J.-S., Kim J.-H., Kim J.-T., Suh J.-K., Lee J.-M., Lee C.-H., 2002. Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J. Chem. Eng. Data, 47, 1237–1242. DOI: 10.1021/je020050e.
  • 12. Li G., Xiao P, Webley P.A., Zhang J., Singh R., Marshall M., 2008. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption, 14, 415–422. DOI: 10.1007/s10450-007-9100-y.
  • 13. Li G., Xiao P., Webley P.A., Zhang J., Singh R., 2009. Competition of CO2/H2O in adsorption based CO2 capture. Energy Procedia, 1, 1123–1130. DOI: 10.1016/j.egypro.2009.01.148.
  • 14. Li G., Xiao P., Zhang J., Webley P.A., 2014. The role of water on postcombustion CO2 capture by vacuum swing adsorption: Bed layering and purge to feed ratio. AIChE J., 60, 673–689. DOI: 10.1002/aic.14281.
  • 15. Ling J., Ntiamoah A., Xiao P., Xu D., Webley P.A., Zhai Y., 2014. Overview of CO2 capture from flue gas streams by vacuum pressure swing adsorption technology. Austin Chem. Eng., 1 (2), 1009.
  • 16. Marx D., Joss L., Hefti M., Pini R., Mazzotti M., 2013. The role of water in adsorption-based CO2 capture systems. Energy Procedia, 37, 107–114. DOI: 10.1016/j.egypro.2013.05.090.
  • 17. Petrus R., Warchoł J., Chutkowski M., 2006. Kinetyka sorpcji zanieczyszczeń ze środowiska wodnego na sorbentach naturalnych. Prace Naukowe Instytutu Inżynierii Chemicznej PAN, 7, 33–52.
  • 18. Purdue M.J., Qiao Z., 2018. Molecular simulation study of wet flue gas adsorption on zeolite 13X. Microporous Mesoporous Mater., 261, 181–197. DOI: 10.1016/j.micromeso.2017.10.059.
  • 19. Qiu H., Lu L.V., Pan B.-C., Zhang Q.-J., Zhang W.-M., Zhang Q.-X., 2009. Critical review in adsorption kinetic models. J. Zhejiang University – SCIENCE A, 10, 716–724. DOI: 10.1631/jzus.A0820524.
  • 20. Rashidi N.A., Yusup S., Loong L.H., 2013. Kinetic studies on carbon dioxide capture using activated carbon. Chem. Eng. Trans., 35, 361–366. DOI: 10.3303/CET1335060.
  • 21. Rege S.U., Yang R.T., Buzanowski M.A., 2000. Sorbents for air prepurification in air separation. Chem. Eng. Sci., 55, 4827–4838. DOI: 10.1016/S0009-2509(00)00122-6.
  • 22. Ryu Y.K., Lee S.J., Kim J.W., Lee C, 2001. Adsorption equilibrium and kinetics of H2O on Zeolite 13X. Korean J. Chem. Eng., 18, 525–530. DOI: 10.1007/BF0269830.
  • 23. Sayılgan S.Ç., Mobedi M., Ülkü S., 2016. Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13X-water pair. Microporous Mesoporous Mater., 224, 9–16. DOI: 10.1016/j.micromeso.2015. 10.041.
  • 24. Son K.N., Richardson T.J., Cmarik G.E., 2019. Equilibrium adsorption isotherms for H2O on Zeolite 13X. J. Chem. Eng. Data, 64, 1063–1071. DOI: 10.1021/acs.jced.8b00961.
  • 25. Tan K.L, Hameed B.H., 2017. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng., 74, 25–48. DOI: 10.1016/j.jtice.2017.01.024.
  • 26. Thomas W.J., Crittenden B., 1998. Adsorption technology and design. Butterworth-Heinemann.
  • 27. Wang Y., LeVan M.D., 2009. Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: Pure components. J. Chem. Eng. Data, 54, 2839–2844. DOI: 10.1021/je800900a.
  • 28. Wynnyk K.G., Hojjati B., Marriott R.A., 2018. High-pressure sour gas and water adsorption on zeolite 13X. Ind. Eng. Chem. Res., 57, 15357–15365. DOI: 10.1021/acs.iecr.8b03317.
  • 29. Zabielska K., Aleksandrzak T., Gabruś E., 2018. Adsorption equilibrium of carbon dioxide on zeolite 13X at high pressures. Chem. Process Eng., 39, 309–321. DOI: 10.24425/122952.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2d24aa3-3d21-449a-8aae-613c628f54b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.