Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In rotating machinery, unattenuated excessive torsional vibration leads to damage and excessive wear. This type of vibration, which is transferred from one structure to another can be estimated using torsional transmissibility factor (TTF). The value of the TTF describes the ratio of output to input and reaches its peak at the natural frequency. Hence, the ability to vary coupling stiffness of two rotating shafts will allow the control of the TTF towards better performance and preventions from fatigue loading. Traditionally, passive rubbers are used as a flexible coupling in between two shafts. However, the constant passive stiffness of the material limits its performance. To address this issue, an adaptive coupling based on magnetorheological elastomer (MRE) is proposed to achieve better TTF at varying frequencies. Mathematical modelling, simulation study and experimental results of MRE for torsional vibration isolation are presented in this work. Natural frequency obtained from the TTF shows an increase of about 3 Hz when current changed from 1 to 6 A.
Czasopismo
Rocznik
Tom
Strony
art. no. 2018014
Opis fizyczny
Bibliogr. 10 poz., fot. kolor., rys., wykr.
Twórcy
autor
- Smart Structure, Systems and Control Research Lab (S3CRL), International Islamic University Malaysia, Malaysia
autor
- Smart Structure, Systems and Control Research Lab (S3CRL), International Islamic University Malaysia, Malaysia
autor
- Smart Structure, Systems and Control Research Lab (S3CRL), International Islamic University Malaysia, Malaysia
Bibliografia
- 1. M. Bunoiu, I. Bica, Magnetorheological elastomer based on silicone rubber, carbonyl iron and Rochelle salt: effects of alternating electric and static magnetic fields intensities, Journal of Industrial and Engineering Chemistry, 37 (2016) 312 - 318.
- 2. Y. Wang, S. Xuan, B. Dong, F. Xu, X. Gong, Stimuli dependent impedance of conductive magnetorheological elastomers, Smart Materials and Structures, 25 (2015) 025003.
- 3. Y. A. Amer, A. T. EL-Sayed, F. T. El-Bahrawy, Torsional vibration reduction for rolling mill’s main drive system via negative velocity feedback under parametric excitation, Journal of Mechanical Science and Technology, 29 (2015) 1581 - 1589.
- 4. A. Ebrahimi, M. Heydari, M. Behzad, Optimal vibration control of rotors with an open edge crack using an electromagnetic actuator, Journal of Vibration and Control, 24 (2018) 37 - 59.
- 5. B. Qiao, T. Zhao, X. Chen, J. Liu, The assessment of active vibration isolation performance of rotating machinery using power flow and vibrational energy: Experimental investigation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230 (2016) 159 - 173.
- 6. J. D. Carlson, M. R. Jolly, MR fluid, foam and elastomer devices, mechatronics, 10 (2000) 555 - 569.
- 7. Y. Han, W. Hong, L. E. Faidley, Field-stiffening effect of magneto-rheological elastomers, International Journal of Solids and Structures, 50 (2013) 2281 - 2288.
- 8. S. S. Rao, Mechanical Vibrations, 5th ed. Upper Saddle River, NJ: Prentice Hall, 2011.
- 9. Y. Li, J. Li, W. Li, H. Du, A state-of-the-art review on magnetorheological elastomer devices, Smart materials and structures, 23 (2014) 123001.
- 10. H. A. Hashi, A. G. Muthalif, N. D. Nordin, Dynamic Tuning of Torsional Transmissibility Using Magnetorheological Elastomer: Modelling and Experimental Verification, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 40 ( 2016 ) 181 - 187.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2d19ef6-e649-47b3-b955-043f04a553e2