Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Interactions between the atmosphere and the ocean determine boundary conditions for physical and biogeochemical processes in adjacent boundary layers, and the ocean surface is a complex interface where all air-sea fluxes take place and is a crucial valuable for ocean circulation and the ecosystem. We have chosen to study the differences between the relevant or most commonly used parameterizations for drag coefficient (CD) for the momentum transfer values, especially in the North Atlantic (NA) and the European Arctic (EA), using them together with realistic wind field. We studied monthly mean values of air-sea momentum flux resulting from the choice of different drag coefficient parameterizations, adapted them to momentum flux (wind stress) calculations using wind fields, sea-ice masks, as well as integrating procedures. We compared the resulting spreads in momentum flux to global values and values in the tropics, an area of prevailing low winds. We found that the spread of results stemming from the choice of drag coefficient parameterization was 14% in the Arctic, the NA and globally, but it was higher (19%) in the tropics. On monthly time scales, the differences were larger at up to 29% in the NA and 36% in the EA (in months of low winds) and even 50% locally (the area west of Spitsbergen). Comparing the values of drag coefficient from chosen parameterizations, it showed that momentum fluxes were largest for all months, in both regions with low and high winds, when the CD values increased linearly with wind speed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
291--299
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
- [1] Andreas, E. L., Mahrt, L., Vickers, D., 2012. A new drag relation for aerodynamically rough flow over the Ocean. J. Atmos. Sci. 69 (8), 2520-2539, http://dx.doi.org/10.1175/JAS-D-11-0312.1.
- [2] Bigdeli, A., Loose, B., Nquyen, A. T., Cole, S. T., 2017. Numerical investigation of the Arctic ice-ocean boundary layer and implications for air-sea gas fluxes. Ocean Sci. 13 (1), 61-75, http://dx.doi.org/10.5194/os-13-61-2017.
- [3] Bryant, K. M., Akbar, M., 2016. An exploration of wind stress calculation techniques in hurricane storm surge modeling. J. Mar. Sci. Eng. 4 (3), 58-83, http://dx.doi.org/10.3390/jmse4030058.
- [4] Bunker, A. F., 1976. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic. Ocean Mon. Weather Rev. 104 (9), 1122-1140, http://dx.doi.org/10.1175/1520-0493(1976)104<1122:COSEFA>2.0.CO;2.
- [5] Charnock, H., 1955. Wind stress on a water surface. Q. J. Roy. Meteorol. Soc. 81, 639-640, http://dx.doi.org/10.1002/qj.49708135027.
- [6] Chelton, D. B., Freilich, M. H., 2005. Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. MWR Mon. Weather Rev. 133, 409-429.
- [7] Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, S. C., Carton, A. J., Chang, P., Doney, S. C., Hack, J., Henderson, T. B., Kiehl, J. T., Large, W. G., McKenna, D. S., Santer, B. D., Smith, R. D., 2006. The Community Climate System Model version 3 (CCSM3). J. Climate 19 (11), 2122-2143, http://dx.doi.org/10.1175/JCLI3761.1.
- [8] Donelan, M. A., Drennan, W. M., Katsaros, K. B., 1997. The air-sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr. 27 (10), 2087-2099, http://dx.doi.org/10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2.
- [9] Dukhovskoy, D. S., Bourassa, M. A., Peterson, G. N., Steffen, J., 2017. Comparison of the surface vector winds from atmospheric reanalysis and scatterometer-based wind products over the Nordic Seas and the northern North Atlantic and their application for ocean modeling. J. Geophys. Res. - Oceans 122, 1943-1973, http://dx.doi.org/10.1002/2016JC012453.
- [10] Enriquez, A. G., Friehe, C. A., 1997. Bulk parameterization of momentum, heat, and moisture fluxes over a coastal upwelling area. J. Geophys. Res. - Oceans 102 (C3), 5781-5798, http://dx.doi.org/10.1029/96JC02952.
- [11] Fer, I., 2009. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Oceanic Sci. Lett. 2 (3), 148-152, http://dx.doi.org/10.1080/16742834.2009.11446789.
- [12] Foreman, R. J., Emeis, S., 2010. Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr. 40, http://dx.doi.org/10.1175/2010JPO4420.1.
- [13] Garratt, J. R., 1977. Review of drag coefficients over oceans and continents. Mon. Weather Rev. 105 (7), 915-929, http://dx.doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.
- [14] Geernaert, G. L., 1990. Bulk parameterizations for the wind stress and heat flux. In: Geernaert, G. L., Plant, W. L. (Eds.), Surface Waves and Fluxes, vol. I. Kluwer, 91-172.
- [15] Geernaert, G. L., Katsoros, K. B., Richter, K., 1986. Variation of the drag coefficient and its dependence on sea state. J. Geophys. Res. 91 (C6), 7667-7679, http://dx.doi.org/10.1029/JC091iC06p07667.
- [16] Geernaert, G. L., Larsen, S. E., Hansen, F., 1987. Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res. - Oceans 92 (C13), 13127-13139, http://dx.doi.org/10.1029/JC092iC12p13127.
- [17] Gerbi, G. P., Trowbridge, J. H., Edson, J. B., Plueddemann, A. J., Terray, E. A., Fredericks, J. J., 2008. Measurements of momentum and heat transfer across the air-sea interface. J. Phys. Oceanogr. 38 (5), 1054-1072, http://dx.doi.org/10.1175/2007JPO3739.1.
- [18] Grachev, A. A., Fairall, C. W., 2001. Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr. 31 (7), 1698-1711.
- [19] Guan, C., Xie, L., 2004. On the linear parameterization of drag coefficient over sea surface. J. Phys. Oceanogr. 34 (12), 2847-2851, http://dx.doi.org/10.1175/JPO2664.1.
- [20] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Daeven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor Soc. 77 (3), 437-471.
- [21] Kukulka, T., Hara, T., Belcher, S. E., 2007. A model of the air-sea momentum flux and breaking-wave distribution for strongly forced wind waves. J. Phys. Oceanogr. 37 (7), 1811-1828, http://dx.doi.org/10.1175/JPO3084.1.
- [22] Large, W. G., Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11 (3), 324-336, http://dx.doi.org/10.1174/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.
- [23] Large, W. G., Yeager, S. G., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. Technical Note NCAR/TN-460+STR. NCAR, Boulder, CO.
- [24] Lüpkes, C., Gryanik, V. M., Hartmann, J., Andreas, E. L., 2012. A parameterization, based on sea-ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J. Geophys. Res. - Atmos. 117 (D13), http://dx.doi.org/10.1029/2012JD01763.
- [25] Rieder, K. F., Smith, J. K., Weller, R. A., 1994. Observed directional characteristics of the wind, wind stress, and surface waves on the open ocean. J. Geophys. Res. - Oceans 99 (C11), 589-596, http://dx.doi.org/10.1029/94JC02215.
- [26] Shutler, J. D., Piolle, J.-F., Land, P. E., Woolf, D. K., Goddijn-Murphy, L., Paul, F., Girard-Ardhuin, F., Chapron, B., Donlon, C. J., 2016. FluxEngine: a flexible processing system for calculating air-sea carbon dioxide gas fluxes and climatologies. J. Atmos. Ocean. Technol. 33 (4), 741-756, http://dx.doi.org/10.1175/JTECH-D-14-00204.1.
- [27] Taylor, G. I., 1916. Skin friction of the wind on the Earth's surface. Proc. Roy. Soc. London A92, 196-199.
- [28] Toba, Y., Smith, S. D., Ebuchi, N., 2001. Historical drag expressions. In: Jones, I. S. F., Toba, Y. (Eds.), Wind Stress Over the Ocean. Cambridge Univ. Press, New York, 35-53.
- [29] Trenberth, K. E., Large, W. G., Olson, J. G., 1989. The effective drag coefficient for evaluating wind stress over the Oceans. J. Climate 2 (12), 1507-1516, https://www.jstor.org/stable/26196243.
- [30] Wu, J., 1969. Wind stress and surface roughness at air-sea interface. J. Geophys. Res. 74 (2), 444-455, http://dx.doi.org/10.1029/JB074i002p00444.
- [31] Wu, J., 1980. Wind stress coefficients over the sea surface near neutral conditions — a revisit. J. Phys. Oceanogr. 10 (5), 727-740, http://dx.doi.org/10.1175/1520-0485(1980)010<0727:WSCOSS>2.0.CO;2.
- [32] Wu, J., 1982. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. 87 (C12), 9704-9706, http://dx.doi.org/10.1029/JC087iC12p09704.
- [33] Yelland, M., Taylor, P. K., 1996. Wind stress measurements from the open ocean. J. Phys. Oceanogr. 26 (4), 541-558, http://dx.doi.org/10.1175/1520-0485(1996)026<0541:WSMFTO>2.0.CO;2.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2d14099-9209-4ab2-8862-437f5cd83905