PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Slurry erosion - design of test devices

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Degradation of material caused by impacts of a solid particle (erodent) suspended in a liquid is called slurry erosion and is a major problem in the hydropower and maritime industry. Slurry erosion depends on many factors, e.g. liquid and erodent velocity, size, shape, angle of impact, hardness and number of erodents, and strength of a target material. The various types of test devices have been designed to investigate an effect of mentioned parameters on material resistance. In the paper are described main types of the test apparatus showing their main advantages and disadvantages. Some results of slurry erosion resistance of few groups of materials are also presented.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 63 poz., rys., wykr.
Twórcy
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials and Welding Engineering, 11/12 Narutowicza, 80-233 Gdansk, Poland,
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Bibliografia
  • 1. Oka Y. I., Yoshida T.: Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage. Wear 259 (2005) 102–109.
  • 2. Arora H. S., Grewal H. S., Singh H., Mukherjee S.: Zirconium based bulk metallic glass-Better resistance to slurry erosion compared to hydroturbine steel. Wear 307 (2013) 28–34.
  • 3. Grewal H. S., Agrawal A., Singh H.: Design and development of high-velocity slurry erosion test rig using CFD. Journal of Materials Engineering and Performance 22 (2013) 152–161.
  • 4. Singh G., Virdi R. L., Goyal K.: Experimental investigation of slurry erosion behaviour of hard faced AISI 316L Stainless Steel. Universal Journal of Mechanical Engineering 3 (2015) 52-56.
  • 5. Nguyen Q. B. Lim C.Y.H., Nguyen V.B., Wan Y.M., Nai B., Zhang Y.W., Gupta M.: Slurry erosion characteristics and erosion mechanisms of stainless steel. Tribology International 79 (2014) 1–7.
  • 6. Zbrowski A., Mizak W.: Analiza systemów wykorzystywanych w badaniach uderzeniowego zużycia erozyjnego. Problemy eksploatacji 3 (2011) 235–250.
  • 7. Grewal H. S., Agrawal A., Singh H., Shollock B. A.: Slurry erosion performance of Ni-Al2O3 based thermal-sprayed coatings: Effect of angle of impingement. Journal of Thermal Spray Technology 23 (2014) 389–401.
  • 8. International Standard IEC 62364:2013 Hydraulic machines - Guide for dealing with hydroabrasive erosion in Kaplan, Francis and Pelton turbines
  • 9. Finnie I.: Some reflections on the past and future of erosion. Wear 186-187 (1995) 1-10.
  • 10. Finnie I.: Erosion of surfaces by solid particles. Wear 3 (1960) 87–103.
  • 11. Grewal H. S., Agrawal A., Singh H.: Slurry erosion mechanism of hydroturbine steel: Effect of operating parameters. Tribolology Letters 52 (2013) 287–303.
  • 12. Lathabai S., Pender D. C.: Microstructural influence in slurry erosion of ceramics. Wear 189 (1995) 122–135.
  • 13. Arora M., Ohl C.D., Morch K.A.: Cavitation inception on microparticles: A self-propelled particle accelerator. Physical Review Letters 92 (2004) 174501–1 - 174501-4
  • 14. Shitole P. P., Gawande S. H., Desale G. R., Nandre B. D.: Effect of Impacting Particle Kinetic Energy on Slurry Erosion Wear. Journal of Bio- and Tribo-Corrosion 1(29) (2015) 1–9.
  • 15. Basha S. S., Periasamy V. M., Kamaraj M.: Slurry Erosion Resistance of Laser-modified 16Cr –5Ni Stainless Steel. International Journal of ChemTech Research 6 (2014) 691–704.
  • 16. Pugsley V. A., Allen C.: Microstructure / property relationships in the cavitation erosion of tungsten carbide – cobalt. Wear 225–229 (1999) 1017–1024.
  • 17. Grewal H.S., Bhandari S., Singh H.: Parametric study of slurry-erosion of hydroturbine steels with and without detonation gun spray coatings using taguchi technique. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43 (2012) 3387–3401.
  • 18. Santa J.F., Baena J.C. Toro A.: Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery. Wear 263 (2007) 258–264.
  • 19. Santa J.F., Espitia L.A., Blanco J.A., Romo S.A., Toro A.: Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267 (2009) 160–167.
  • 20. Mann B.S.,Arya V., Maiti A.K., Rao M.U.B., Joshi P.: Corrosion and erosion performance of HVOF/TiAlN PVD coatings and candidate materials for high pressure gate valve application. Wear 260 (2006) 75–82.
  • 21. Kumar A, Sapra P.K., Bhandari S.: A review paper on slurry erosion of plasma and flame thermal sprayed coatings. National Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering 2011.
  • 22. Mohammadi F., Luo J.: Effect of cold work on erosion-corrosion of 304 stainless steel. Corros. Sci. 53 (2011) 549–556.
  • 23. Recco A.A.C., López D., Bevilacqua A.F., da Silva F., Tschiptschin A.P.: Improvement of the slurry erosion resistance of an austenitic stainless steel with combinations of surface treatments: Nitriding and TiN coating. Surf. Coatings Technol. 202 (2007) 993–997.
  • 24. Xu J., Zhuo C., Han D., Tao J., Liu L., Jiang S.: Erosion-corrosion behavior of nano-particlereinforced Ni matrix composite alloying layer by duplex surface treatment in aqueous slurry environment. Corros. Sci. 51 (2009) 1055–1068.
  • 25. Mann B.S.: High-energy particle impact wear resistance of hard coatings and their application in hydroturbines. Wear 237 (2000) 140–146
  • 26. ASTM G 40-15: Standard Terminology Relating to Wear and Erosion
  • 27. ASTM G73-10: Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus.
  • 28. ASTM G76-13: Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets.
  • 29. Syamsundar C., Chatterjee D., Kamaraj M., Maiti A. K.: Erosion Characteristics of Nanoparticle-Reinforced Polyurethane Coatings on Stainless Steel Substrate. J. Mater. Eng. Perform. 24 (2015) 1391–1405.
  • 30. Lina H.CWub., S.K., Yeha C.H.: A comparison of slurry erosion characteristics of TiNi shape memory alloys and SUS304 stainless steel. Wear 246 (2001) 557-565.
  • 31. Lin M. C., Chang L. S., Lin H. C., Yang C. H., Lin K. M.: A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating. Surf. Coatings Technol. 201 (2006) 3193–3198.
  • 32. Zhang J., Richardson M. O. W., Wilcox G. D., Min J., Wang X.: Assessment of resistance of non-metallic coatings to silt abrasion and cavitation erosion in a rotating disk test rig. Wear 194 (1996) 149–155.
  • 33. Padhy M. K., Saini R. P.: Effect of size and concentration of silt particles on erosion of Pelton turbine buckets. Energy 34 (2009) 1477–1483.
  • 34. Rai A. K., Kumar A., Staubli T.: Developing a Test Rig To Measure Hydro-Abrasive Erosion in Pelton Turbine. Int. Conf. Hydropower Sustain. Dev. 05-07 (2015) 535–547.
  • 35. Oka Y. I., Mihara S., Yoshida T.: Impact-angle dependence and estimation of erosion damage to ceramic materials caused by solid particle impact. Wear 267 (2009) 129–135.
  • 36. Momber A.W.: Effects of erodent flow energy and local exposure time on the erosion of cementbased composites at high-speed hydro-abrasive flow. Wear 378-379 (2017) 145–154
  • 37. Zu J. B., Hutchings I. M., Burstein G. T.: Design of a slurry erosion test rig. Wear 140 (1990) 331–344.
  • 38. Wentzel E. J., Allen C.: The erosion-corrosion resistance of tungsten-carbide hard metals. Int. J. Refract. Met. Hard Mater. 15 (1997) 81–87.
  • 39. Li Y., Burstein G. T., Hutchings I. M.: The influence of corrosion on the erosion of aluminium by aqueous silica slurries. Wear 186–187 (1995) 515–522.
  • 40. Fang Q., Sidky P., Hocking M.: Erosive wear behaviour of aluminium based composites. Mater. Des. 18 (1997) 389–393.
  • 41. Gopi K. R., Nagarajan R., Rao S. S., Mandal S.: Erosion model on alumina ceramics: A retrospection, validation and refinement. Wear 264 (2008) 211–218.
  • 42. Manisekaran T., Kamaraj M., M. Sharrif S., Joshi S. V.: Slurry erosion studies on surface modified 13Cr-4Ni steels: Effect of angle of impingement and particle size. J. Mater. Eng. Perform. 16 (2007) 567–572.
  • 43. Shivamurthy R. C., Kamaraj M., Nagarajan R., Shariff S. M., Padmanabham G.: Influence of microstructure on slurry erosive wear characteristics of laser surface alloyed 13Cr-4Ni steel. Wear 267 (2009) 204–212.
  • 44. Shivamurthy R. C., Kamaraj M., Nagarajan R., Shariff S. M., Padmanabham G.: Slurry erosion characteristics and erosive wear mechanisms of Co-based and Ni-based coatings formed by laser surface alloying. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41 (2010) 470–486.
  • 45. Grewal H. S., Arora H. S., Agrawal A., Singh H., Mukherjee S.: Slurry erosion of thermal spray coatings: Effect of sand concentration. Procedia Eng. 68 (2013) 484–490.
  • 46. Wood R. J. K., Mellor B. G., Binfield M. L.: Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear (1997) 70–83.
  • 47. Turenne S., Fiset M., Masounave J.: The effect of sand concentration on the erosion of materials by a slurry jet. Wear 133 (1989) 95–106.
  • 48. Yngve N.: Material removal mechanism of Ni(200) when eroded by a slurry at 30° incidence. Wear 105 (1985) 123–130.
  • 49. Neville A., Mcdougall B.A.B.: Erosion- and Cavitation-Corrosion of Titanium and Its Alloys. Wear 250 (2001), 726–735.
  • 50. Santa J. F., Espitia L. A., Blanco J. A., Romo S. A., Toro A.: Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267 (2009)160–167.
  • 51. Tsai W., Humphrey J. A. C., Cornet I., Levy A. V.: Experimental measurement of accelerated erosion in a slurry pot tester. Wear 68 (1981) 289–303.
  • 52. Gupta R., Singh S. N., Sehadri V.: Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester. Wear 184 (1995) 169–178.
  • 53. Gandhi B. K., Singh S. N., Seshadri V.: A study on the effect of surface orientation on erosion wear of flat specimens moving in a solid-liquid suspension. Wear 254 (2003)1233–1238.
  • 54. Gadhikar A. A., Sharma A., Goel D. B., Sharma C. P.: Fabrication and testing of slurry pot erosion tester. Trans. Indian Inst. Met. 64 (2011) 493–500.
  • 55. Thakur L., Arora N.: A comparative study on slurry and dry erosion behaviour of HVOF sprayed WC-CoCr coatings. Wear 303 (2013).
  • 56. Tuzson J. J.: Laboratory Slurry Erosion Tests and Pump Wear Rate Calculations. J. Fluids Eng. 106 (1984) 35.
  • 57. Clark H. M., Hawthorne H. M., Xie Y.: Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester. Wear 233–235 (1999) 319–327.
  • 58. Xie Y., Clark H. M., Hawthorne H. M.: Modelling slurry particle dynamics in the Coriolis erosion tester. Wear 225–229 (1999) 405–416.
  • 59. Xie Y., Jiang J.J., Tufa K. Y., Yick S.: Wear resistance of materials used for slurry transport. Wear 332–333 (2015).
  • 60. Bhushan B.: Fundamentals of Tribology and Bridging the Gab between Macro- and Micro/Nanoscale. B. Bhushan [ed.], Kluwer Academic Publishers, Netherlands, 2014.
  • 61. Lin F. Y., Shao H. S.: Effect of impact velocity on slurry erosion and a new design of a slurry erosion tester. Wear 143 (1991) 231–240.
  • 62. Abouel-Kasem A., Abd-elrhman Y. M., Emara K. M., Ahmed S. M.: Design and performance of slurry erosion tester. J. Tribol. 132 (2010) 1–10.
  • 63. Al-Bukhaiti M. A., Ahmed S. M., Badran F. M. F., Emara K. M.: Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear 262 (2007) 1187–1198.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2d06d0d-7792-484e-ab45-123d912776d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.