PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and simulation of the furniture manufacturing and assembly process in the Arena simulation software

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie i symulacja procesu wytwarzania i montażu mebli w programie symulacyjnym Arena
Języki publikacji
EN
Abstrakty
EN
The article describes issues related to creating discrete simulation models for the implementation of the furniture manufacturing and assembly process in a furniture company. The methodology of the manufacturing system analysis was presented, which is aimed to support the appropriate approach to the construction of simulation models. The scope of the work includes the technological identification of the furniture manufacturing and assembly process in real production conditions, on the basis of which the appropriate simulation model was built. The course of the process was analyzed in the Arena software on the basis of a computer simulation based on reports. As a result of the simulation of the manufacturing process with the use of information from report of usage, an area for improvement was located. The re-analysis of the material flow made it possible to propose a change in the input parameters for the simulation model in the indicated area. The results of the second simulation show significant changes in the effective use of workstations and increase in the efficiency of the production line. In practice, it can be the basis for introducing simulated changes in the production system.
PL
W artykule opisano zagadnienia związane z tworzeniem dyskretnych modeli symulacyjnych dla realizacji procesu wytwarzania i montażu mebli w przedsiębiorstwie branży meblarskiej. Przedstawiono metodykę analizy systemu wytwarzania, która ma za zadanie wspierać właściwe podejście dla budowy modeli symulacyjnych. Zakresem praca obejmuje identyfikację technologiczną procesu wytwarzania i montażu mebli w rzeczywistych warunkach produkcyjnych, w oparciu o którą zbudowano właściwy model symulacyjny na przykładzie procesu wytwarzania w rzeczywistych warunkach produkcyjnych. Analizę przebiegu procesu na podstawie symulacji komputerowej w oparciu o raporty przeprowadzono w oprogramowaniu Arena. W wyniku przeprowadzonej symulacji procesu wytwarzania z wykorzystaniem informacji z raportu obciążeń stanowiskowych zlokalizowano obszar do doskonalenia. Powtórna analiza przepływu materiałowego pozwoliła zaproponować zmianę parametrów wejściowych dla modelu symulacyjnego we wskazanym obszarze. Wyniki drugiej symulacji wskazują istotne zmiany w zakresie efektywnego wykorzystania stanowisk pracy oraz zwiększenia wydajności linii produkcyjnej. W praktyce może to stanowić podstawę do wprowadzenia symulowanych zmian w omawianym systemie produkcyjnym.
Rocznik
Tom
Strony
13--22
Opis fizyczny
Bibliogr. 23 poz., il. kolor., rys., wykr.
Twórcy
autor
  • University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, Willowa 2, 43-309 Bielsko-Biała, Poland
  • University of Bielsko-Biala, Faculty of Mechanical Engineering and Computer Science, Willowa 2, 43-309 Bielsko-Biała, Poland
  • University Of Žilina, Faculty of Mechanical Engineering, Department of Industrial Engineering, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
  • 1. Barduk Anna, Łapczyńska Dagmara, Popiel Piotr. 2021. „Simulation Modeling in Production Effectiveness Improvement – Case Study”, Management and Production Engineering Review vol. 12, no. 2: 75:85. DOI: 10.24425/mper.2021.137680
  • 2. Ciszak Olaf. 2007. Computer aided modeling and simulation of production processes. In: Scientific Journals of Poznan University of Technology, 39-45. Poznań: Wydawnictwo Politechniki Poznańskiej.
  • 3. Dobrzański Paweł, Dobrzańska Magdalena. 2018. „Computer simulation of warehouse processes using the Enterprise Dynamics software”, Autobusy: technika, eksploatacja, systemy transportowe, 6: 1026-1029.
  • 4. Dźwiarek Marek. 2021. „Cybersecurity of machinery in Industry 4.0”, Maszyny Elektryczne – Zeszyty Problemowe, 2: 125-130.
  • 5. Gościński Janusz W. 1982. Sterowanie i planowanie. Ujęcie systemowe, Warsaw: PWE.
  • 6. Grznár Patrik, Gregor Milan, Krajčovič Martin, Mozol Štefan, Schickerle Marek, Vavrík Vladimír, Durica Lukáš, Marschall Martin, Bielik Tomáš. 2020. „Modeling and Simulation of Processes in a Factory of the Future”. Applied Sciences 10. 4503. DOI: 10.3390/app10134503.
  • 7. Iwański Tomasz. 2017. „Industry 4.0 and everything is clear”, Napędy i sterowanie 1: 22-23.
  • 8. Jafari Niloofar, Azarian Mohammad, Yu Hao. 2022. “Moving from Industry 4.0 to Industry 5.0: What Are the Implications for Smart Logistics?”, Logistics 6 no. 2: 26. DOI: 10.3390/logistics6020026.
  • 9. Kawa Arkadiusz, Fuks Konrad, Januszewski Piotr. 2016. „Computer Simulation as a Research Method in Management Sciences”, Studia Oeconomica Posnaniensia, no. 1, t. 4: 109-127.
  • 10. Kelton David. 2014. Simulation with Arena sixth edition, Mc Graw Hill Education.
  • 11. Kluz Rafał., Antosz Katarzyna. 2019. “Simulation of Fliexible Manufacturing Systems as an Element of Education Towards Industry 4,0. In: 6th International Scientific-Technical Conference on Advances in Manufacturing II (Manufacturing): 332-341. DOI: 10.1007/978-3-030-18715-6_28.
  • 12. Kłos Sławomir, Patalas-Maliszewska Justyna. 2020, „Using the Simulation Methos for Modelling a Manufacturing System of Predictive Maintenance”, Advances in Intelligent Systems and Computing 1001: 57-64, DOI: 10.1007/978-3-030-23946-6_7.
  • 13. Kolny Damian, Drobina Robert. 2022. Modeling and simulation of cutting chipboard sheets process in the arena program. In: Technologies, processes and systems of manufacturing, ed. J. Rysiński, D. Więcek, 161-174. Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej.
  • 14. Kolny Damian, Drobina Robert. 2022. Transformation of the industrial revolution idea in the industry 4.0 context. In: Technologies, processes and systems of manufacturing, ed. J. Rysiński, D. Więcek, 149-160. Wydawnictwo Naukowe Akademii Techniczno-Humanistycznej.
  • 15. Kumar Shailendra, Suhaib Mohd., Asjad Mohammad. 2020. “Industry 4.0: Complex, disruptive, but inevitable”, Management and Production Engingeering Review, volume 11, no. 1: 43-51.
  • 16. Leng Jiewu, Wang Dewen, Shen Weiming, Li Xinyu, Liu Qiang, Chen Xin. 2021. “Digital twins-based smart manufacturing system design in Industry 4.0: A review.” Journal of Manufacturing Systems. 60: 119-137. DOI: 10.1016/j.jmsy.2021.05.011.
  • 17. Lewandowski Jerzy, Skołud Bożena, Plinta Dariusz. 2014. Organization of production systems, Warsaw: PWE.
  • 18. Maciąg Artur, Pietroń Roman, Kukla Sławomir. 2013. Forecasting and simulation in the enterprise, Warsaw: PWE.
  • 19. Małopolski Waldemar. 2012. „Modeling and optimization of manufacturing systems using Arena software”, Technical Transactions. Mechanics, R. 109, z. 8-M: 91-108.
  • 20. Pizoń Jakub, Gola Arkadiusz. 2023. "Human–Machine Relationship–Perspective and Future Roadmap for Industry 5.0 Solutions" Machines 11, no. 2: 203. DOI: 10.3390/machines11020203.
  • 21. Rostkowska Marta. 2014. “Simulation of Production Lines in the Education of Engineers: How to Choose the Right Software?”, Management and Production Engineering Review 5(4): 53-65. DOI: 10.2478/mper-2014-0036.
  • 22. Suwada Krzysztof. 2009. Distribution fitting and simulation experiment using traffic accident data, StatSoft Poland.
  • 23. StatSoft. 2006. Electronic Statistics Textbook, Kraków, WEB: http://www.statsoft.pl/textbook/stathome.html, (12.10.2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2cf3d6d-f68d-407f-9a61-c5bc3fd44d7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.