PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Chemical Amelioration on the Structure of the Phosphate Fund of Retisol of Western Polissia in Ukraine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study of changes in the structure of the phosphate fund of retisol after two rotations of a 4-field field crop rotation under the influence of the introduction of dolomite (CaMg(CO3)2) and limestone (CaCO3) flour in different doses before the start of the first rotation was carried out in the stationary experiment of the Institute of Agriculture of the Western Polissia of Ukraine. The dose of limestone materials is calculated on the basis of hydrolytic acidity (Hh) 2.80–2.97 mol/kg: for dolomite flour 0.5 Hh – 2.2 t/ha; 1.0 Hh – 4.7; 1.5 Hh – 6.7 t/ha; for limestone flour 1.0 Hh – 4.9 t/ha. The saturation of crop rotation with mineral fertilizers was N112Р87К105. The general background of the experiment was the annual application of the non-marketable part of the crop at a dose of 6.0 t/ha of biomass. The purpose of the work is to investigate the directionality of the transformation of the forms and different fractions of retisol phosphorus under the influence of liming against the background of systematic fertilization after the completion of the second crop rotation rotation. Research has established that under the influence of the introduction of meliorants, the share of mineral phosphorus compounds (P inorganic) fluctuated widely according to the experiment options (47.0 – 67.4% of P total), and organic – in the range of 28.5–37.5% P total. Liming against the background of fertilizer application also caused certain changes in the proportions between different forms of phosphorus. The main part (55.5–70.7%) of inorganic P is aluminum phosphates (Al-P) and iron phosphates (Fe-P). Liming with increasing doses of meliorants significantly (р = 0.05) affected the reduction of the total share of Al-P and Fe-P compared to the control and application of only mineral fertilizers, and also contributed to a significant increase in the share of Ca-P calcium phosphates (р = 0.01). At рНKCl 4.0–6.0, the content of P inorganic fractions was distributed in the order from maximum to minimum indicators: Al-P > Fe-P > Р soluble >Са-Р. Neutralization of the acidity of the soil solution also contributed to a significant increase in the contentof the soluble fraction of phosphorus (P soluble) to 4.9-5.4% of total P (р = 0.05), and the level of availability oflabile phosphorus compounds of the studied soil increased and was noted as high. The established features of thetransformation of the phosphate pool in retisol under the influence of the introduction of chemical ameliorantsindicate an increase in the share of bioavailable phosphorus compounds, significant changes in the conditions ofphosphorus nutrition of crop rotation crops and a change in the functional stability of the agroecosystem in general.
Twórcy
  • Institute of Agriculture of Western Polissia of NAAS, Rivne Street, 5, Shubkiv, Rivne district, Rivne region, Ukraine
  • Institute of Agriculture of Western Polissia of NAAS, Rivne Street, 5, Shubkiv, Rivne district, Rivne region, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony 15, Kyiv, Ukraine
  • National University of Water and Environmental Engineering, Soborna St., 11, Rivne, Ukraine
Bibliografia
  • 1. Appelhans S., Carciochi W., Correndo A., Gutierrez Boem F., Salvagiotti F., Garcia F.O. et al. 2020. Predicting Soil Test Phosphorus Decrease in Non-Pfertilized Conditions. Eur. J. Soil Sci., 72, 264–254. https://doi.org/doi:10.1111/ejss.12946
  • 2. Bindraban P.S., Dimkpa C.O., Pandey R. 2020. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol Fertil Soils., 56, 299–317. https://doi.org/10.1007/s00374-019-01430-2.
  • 3. Cade-Menun B.J. 2022. Changes in Soil Phosphorus Pools in Long-Term Wheat-Based Rotations in Saskatchewan, Canada With and Without Phosphorus Fertilization. Span. J. Soil Sci., 12, 10737. https://doi.org/doi: 10.3389/sjss.2022.10737
  • 4. Chang S.C., Jackson M.L. 1957. Fractionation of soil phosphorus. Soil Sci., 84, 133–144. https://doi.org/10.1097/00010694-195708000-00005.
  • 5. Chulo F., Laekemariam F., Kiflu A., Gidago G., Getaneh L. 2022. Soil Phosphorus Fractions and Their Quantity in Acidic Luvisols under Lime Rates in Ethiopia. Communications in Soil Science and Plant Analysis, 54(3), 1–15. https://doi.org/10.1080/00103624.2022.2112214
  • 6. Ducousso-Détrez A., Fontaine J., Lounès-Hadj Sahraoui A., Hijri M. 2022. Diversity of Phosphate Chemical Forms in Soils and Their Contributions on Soil Microbial Community Structure Changes. Microorganisms, 10(3), 609. https://doi.org/10.3390/microorganisms10030609
  • 7. Guo Z., Liu H., Hua K., Wang D., He C. 2018. Longterm straw incorporation benefits the elevation of soil phosphorus availability and use efficiency in the agroecosystem. Spanish Journal of agricultural research, 16(3), 1101–1101. https://doi.org/10.5424/sjar/2018163-12857
  • 8. Gupta А., Maheshwari А., Khanam R. 2020. Assessment of phosphorus fixing capacity in different soil orders of India. Journal of Plant Nutrition, 43(15), 2395–2401. https://doi.org/10.1080/01904167.2020.1771585
  • 9. Hinsinger P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 237, 173–195. https://doi.org/10.1023/A:1013351617532
  • 10. Horodniy M.M., Lisoval A.P., Bykin A.V. et al. 2007. Agrochemical analysis. Kyiv: Aristei, 624.
  • 11. Ikhajiagbe B., Anoliefo G., Rackelmann F. et al. 2020. Major phosphorus in soils is unavailable, yet critical for plant development. Notulae Scientia Biologicae. 12(3), 500–535. https://doi.org/10.15835/nsb12310672
  • 12. IUSS Working Group WRB (2022). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria. https://www3.ls.tum.de/boku/wrb-working-group/documents/wrb-2022/
  • 13. Jokubauskaite I., Karcauskiene D., Antanaitis S., Mazvila J., Slepetiene A., Končius D., Piaulokaite-Motuziene L. 2015. The distribution of phosphorus forms and fractions in Retisol under different soil liming management. Zemdirb Agric., 102(3), 251–256. https://doi.org/10.13080/z-a.2015.102.032
  • 14. Khristenko A.О. 2020. Theoretical problems of the methodology of balance assessment of the cycle of macroelements in the “fertilizer-soil-plant” system. Agrochemistry and Soil Science, 90, 47–56. https://doi.org/10.31073/acss90-05.
  • 15. Kiflu A., Beyene S., Jeff S. 2017. Fractionation and availability of phosphorus in acid soils of Hagereselam, Southern Ethiopia under different rates of lime. Chem. Biol. Technol. Agric., 4(21). https://doi.org/10.1186/s40538-017-0105-9
  • 16. Kisinyo P.O., Othieno C.O., Gudu S., Okalebo J.R., Opala P.A. 2013. Immediate and residual effects of lime and phosphorus fertilizer on soil acidity and maize production in Western Kenya. Experimental Agriculture, 50, 128–143. https://doi.org/10.1017/S0014479713000318
  • 17. Li C., Zhang P., Zhang J., Zhu P., Wang L. 2021. Forms, transformations and availability of phosphorus after 32 years of manure and mineral fertilization in a Mollisol under continuous maize cropping. Archives of Agronomy and Soil Science, 67(9), 1256–1271. https://doi.org/10.1080/03650340.2020.1787385
  • 18. Liu Z.P, Shao M.A, Wong Y.Q. 2013. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma, 197–198, 67–78. http://dx.doi.org/10.1016/j.geoderma.2012.12.011
  • 19. Lopushniak V.I. 2014. Changing fractions mineral phosphorus in dark-gray podzolic soil under various fertilization systems. Bulletin of Agricultural Science, 11, 12–15. https://agrovisnyk.com/oldpdf/visnyk_11_2014.pdf
  • 20. Lopushniak V., Hrytsuliak H., Gamayunova V., Kozan N., Zakharchenko E., Voloshin Y., Kotsyubynska Y. 2022. Α Dynamics of Macro Elements Content in Eutric Podzoluvisols for Separation of Wastewater under Jerusalem Artichokes. Journal of Ecological Engineering, 23(4), 33–42. https://doi.org/10.12911/22998993/146268
  • 21. Lun F., Liu J., Ciais P., Nesme T., Chang J., Wang R., Goll D., Sardans J., Peñuelas J., Obersteiner M. 2018. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data, 10, 1–18. https://doi.org/10.5194/essd-10-1-2018, 2018
  • 22. Mahmood M., Tian Y., Ma Q., Ahmed W., Mehmood S., Hui X., Wang Z. 2020. Changes in Phosphorus Fractions and Its Availability Status in Relation to Long Term P Fertilization in Loess Plateau of China. Agronomy, 10(11), 1818. https://doi.org/10.3390/agronomy10111818
  • 23. Miroshnychenko M., Khristenko A., Hladkikh Ye. 2021. 50-year dynamics of the content of moving compounds of nitrogen, phosphorus and potassium in degraded chornozem according to the stationary field experiment. Bulletin of Agricultural Science, 8(821), 5–14. https://doi.org/10.31073/agrovisnyk202108-01
  • 24. Murphy J., Riley J.P. 1962. A Modified Single Solution Methods for the Determination of Available Phosphate in Natural Water. Analytica Chimica Acta, 27, 31–36. http://dx.doi.org/10.1016/S0003-2670(00)88444-5
  • 25. Nosko B.S. 2017a. Modern problems of phosphorus in farming agriculture and ways of their solution. Bulletin of Agricultural Science, 6(95), 5–12. https://doi.org/10.31073/agrovisnyk201706
  • 26. Nosko B.S. 2017b. To the issue on the formation of the phosphate soil fund. Agrochemistry and Soil Science, 86, 87–92. http://agrochemsoilsci.org/ACSS_no86_full_text.pdf
  • 27. Nosko B.S. 2018. Natural and anthropogenic evolution of the phosphate fund for soils in Ukraine. Agrochemistry and Soil Science, 87, 92–99. http://agrochemsoilsci.org/ACSS_no87_full_text.pdf
  • 28. Ojo A.O., Adetunji M.T., Okeleye K.A., Adejuyigbe C.O. 2015. Soil Fertility, Phosphorus Fractions, and Maize Yield as Affected by Poultry Manure and Single Superphosphate. International Scholarly Research Notices, 10, 616213. https://doi.org/10.1155/2015/616213
  • 29. Patidar J., Sharma Y.M., Tagore G.S. 2019. Phosphorus fractions in contrasting soil Orders in Central India. Int. J. Curr. Microbiol. Appl. Sci., 8, 3050–3059. https://doi.org/10.20546/ijcmas.2019.801.325
  • 30. Pavlichenko A. 2021. Influence of different fertilization and chemical recruitment systems on the phosphorus regime of gray forest soil. Аgroecological journal, 4, 131–138. https://doi.org/10.33730/2077-4893.4.2021.252966
  • 31. Penn C.J., Camberato J.J. 2019. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture, 9(6), 120. https://doi.org/10.3390/agriculture9060120
  • 32. Qaswar M., Dongchu L., Jing H. et al. 2020. Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat–maize cropping system. Scientific Reports, 10(19828). https://doi.org/10.1038/s41598-020-76892-8
  • 33. Quiroga M.J., Olego M.Á., Sánchez-García M., Medina J.E., Visconti F., Coque J.J.R., Garzón Jimeno J.E. 2017. Effects of liming on soil properties, leaf tissue cation composition and grape yield in a moderately acid vineyard soil. Influence on must and wine quality. OENO One, 51(4), 343. https://doi.org/10.20870/oeno-one.2017.51.4.2039
  • 34. Simonsson M., Östlund A., Renfjäll L., Sigtryggsson C., Börjesson G., Kätterer T. 2018. Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma, 315, 208–219. https://doi.org/10.1016/j.geoderma.2017.11.019
  • 35. Soon Y.K., Hendershot W.H. 2006. Methods of Soil Analysis. III Soil Chemical Analyses. Chapter 24 Total and Organic Phosphorus. By Taylor & Francis Group, LLC. https://www.niordc.ir/uploads/86_106_Binder2.pdf
  • 36. Vasbieva М.T., Zavyalova N.E. 2021. Phosphate regime of sod-podzolic soil in natural and agrophytocenoses. Dokuchaev Soil Bulletin, 107, 92–115. https://doi.org/10.19047/0136-1694-2021-107-92-115
  • 37. Wierzbowska J., Sienkiewicz S., Zalewska M. et al. 2020. Phosphorus fractions in soil fertilised with organic waste. Environ Monit Assess., 192, 315. https://doi.org/10.1007/s10661-020-8190-9
  • 38. Yan X., Yang W., Chen X., Wang M., Wang W., Ye D., Wu L. 2020. Soil Phosphorus Pools, Bioavailability and Environmental Risk in Response to the Phosphorus Supply in the Red Soil of Southern China. Int J Environ Res Public Health., 17(20), 7384. https://doi.org/10.3390/ijerph17207384
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a2c7a924-e80e-4780-8473-4192a4dc2618
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.