GROWTH AND OSCILLATION OF SOME POLYNOMIALS GENERATED BY SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS

Zinelâabidine Latreuch and Benharrat Belaïdi

Communicated by Alexander Gomilko

Abstract

In this paper, we continue the study of some properties on the growth and oscillation of solutions of linear differential equations with entire coefficients of the type

$$
f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0
$$

and

$$
f^{(k)}+A_{k-2}(z) f^{(k-2)}+\ldots+A_{0}(z) f=0
$$

Keywords: linear differential equations, finite order, exponent of convergence of the sequence of distinct zeros, hyper-exponent of convergence of the sequence of distinct zeros.

Mathematics Subject Classification: 34M10, 30D35.

1. INTRODUCTION AND MAIN RESULTS

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of Nevanlinna's value distribution theory (see [11, $13,18]$). In addition, we will use $\lambda(f)$ and $\bar{\lambda}(f)$ to denote respectively the exponents of convergence of the zero-sequence and distinct zeros of a meromorphic function f, $\rho(f)$ to denote the order of growth of f. A meromorphic function $\varphi(z)$ is called a small function with respect to $f(z)$ if $T(r, \varphi)=o(T(r, f))$ as $r \rightarrow+\infty$ except possibly a set of r of finite linear measure, where $T(r, f)$ is the Nevanlinna characteristic function of f.

Definition $1.1([9,18])$. Let f be a meromorphic function. Then the hyper-order of $f(z)$ is defined as

$$
\rho_{2}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r}
$$

Definition 1.2 ([11, 16]). The type of a meromorphic function f of order ρ $(0<\rho<\infty)$ is defined as

$$
\tau(f)=\limsup _{r \rightarrow+\infty} \frac{T(r, f)}{r^{\rho}}
$$

If f is an entire function, then the type of f of order $\rho(0<\rho<\infty)$ is defined as

$$
\tau_{M}(f)=\limsup _{r \rightarrow+\infty} \frac{\log M(r, f)}{r^{\rho}}
$$

where $M(r, f)=\max _{|z|=r}|f(z)|$.
Definition $1.3([9,18])$. Let f be a meromorphic function. Then the hyper-exponent of convergence of the zeros sequence of $f(z)$ is defined as

$$
\lambda_{2}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \log N\left(r, \frac{1}{f}\right)}{\log r}
$$

where $N\left(r, \frac{1}{f}\right)$ is the counting function of zeros of $f(z)$ in $\{z:|z| \leq r\}$. Similarly, the hyper-exponent of convergence of the sequence of distinct zeros of $f(z)$ is defined as

$$
\bar{\lambda}_{2}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \log \bar{N}\left(r, \frac{1}{f}\right)}{\log r}
$$

where $\bar{N}\left(r, \frac{1}{f}\right)$ is the counting function of distinct zeros of $f(z)$ in $\{z:|z| \leq r\}$.
It is well-known that the study of the properties of solutions of complex differential equations is an interesting topic. The growth and oscillation theory for complex differential equations in the plane were firstly investigated by Bank and Laine in 1982-1983 (see [1, 2]). In [7], Z.X. Chen began to consider the fixed points of solutions of the linear differential equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f=0 \tag{1.1}
\end{equation*}
$$

where A is a polynomial and transcendental entire function with finite order. In [15], the authors have investigated the relations between the solutions of (1.1) and small functions. They showed that $w=d_{1} f_{1}+d_{2} f_{2}$ keeps the same properties of the growth and oscillation of $f_{j}(j=1,2)$, where f_{1} and f_{2} are two linearly independent solutions of (1.1), $d_{j}(z)(j=1,2)$ are entire functions of finite order and obtained the following results:

Theorem 1.4 ([15]). Let $A(z)$ be a transcendental entire function of finite order. Let $d_{j}(z)(j=1,2)$ be finite order entire functions that are not all vanishing identically such that $\max \left\{\rho\left(d_{1}\right), \rho\left(d_{2}\right)\right\}<\rho(A)$. If f_{1} and f_{2} are two linearly independent solutions of (1.1), then the polynomial of solutions $w=d_{1} f_{1}+d_{2} f_{2}$ satisfies

$$
\rho(w)=\rho\left(f_{j}\right)=\infty \quad(j=1,2)
$$

and

$$
\rho_{2}(w)=\rho_{2}\left(f_{j}\right)=\rho(A) \quad(j=1,2) .
$$

Theorem 1.5 ([15]). Under the hypotheses of Theorem 1.4 , let $\varphi(z) \not \equiv 0$ be an entire function with finite order such that $\psi(z) \not \equiv 0$. If f_{1} and f_{2} are two linearly independent solutions of (1.1), then the polynomial of solutions w satisfies

$$
\bar{\lambda}(w-\varphi)=\lambda(w-\varphi)=\rho\left(f_{j}\right)=\infty \quad(j=1,2)
$$

and

$$
\bar{\lambda}_{2}(w-\varphi)=\lambda_{2}(w-\varphi)=\rho(A)
$$

where

$$
\left.\begin{aligned}
\psi(z)= & \frac{2\left(d_{1} d_{2} d_{2}^{\prime}-d_{2}^{2} d_{1}^{\prime}\right)}{h} \varphi^{(3)}+\phi_{2} \varphi^{\prime \prime}+\phi_{1} \varphi^{\prime}+\phi_{0} \varphi \\
\phi_{2}= & \frac{3 d_{2}^{2} d_{1}^{\prime \prime}-3 d_{1} d_{2} d_{2}^{\prime \prime}}{h}, \\
\phi_{1}= & \frac{2 d_{1} d_{2} d_{2}^{\prime} A+6 d_{2} d_{1}^{\prime} d_{2}^{\prime \prime}-6 d_{2} d_{2}^{\prime} d_{1}^{\prime \prime}-2 d_{2}^{2} d_{1}^{\prime} A}{h}, \\
\phi_{0}= & \frac{2 d_{2} d_{1}^{\prime} d_{2}^{\prime \prime \prime}-2 d_{1} d_{2}^{\prime} d_{2}^{\prime \prime \prime}-3 d_{1} d_{2} d_{2}^{\prime \prime} A-3 d_{2} d_{1}^{\prime \prime} d_{2}^{\prime \prime}+2 d_{1} d_{2} d_{2}^{\prime} A^{\prime}}{h} \\
& -\frac{4 d_{2} d_{1}^{\prime} d_{2}^{\prime} A-6 d_{1}^{\prime} d_{2}^{\prime} d_{2}^{\prime \prime}+3 d_{1}\left(d_{2}^{\prime \prime}\right)^{2}+4 d_{1}\left(d_{2}^{\prime}\right)^{2} A+3 d_{2}^{2} d_{1}^{\prime \prime} A}{h} \\
& +\frac{6\left(d_{2}^{\prime}\right)^{2} d_{1}^{\prime \prime}-2 d_{2}^{2} d_{1}^{\prime} A^{\prime}}{h}, \\
h= & d_{2} \\
d_{1} & d_{2} \\
d_{1}^{\prime} & d_{1}^{\prime \prime}-d_{1} A \\
d_{1}^{\prime \prime \prime}-3 d_{1}^{\prime} A-d_{1} A^{\prime} & d_{1}^{\prime \prime}-d_{1} A+2 d_{1}^{\prime \prime} \\
d_{1}^{\prime \prime \prime}-3 d_{2}^{\prime} A-d_{2} A^{\prime} & d_{1}^{\prime \prime}-d_{2} A-2 d_{2}^{\prime \prime}
\end{aligned} \right\rvert\, .
$$

It is a natural to ask: Can we obtain the same results as in Theorem 1.4 and Theorem 1.5 for higher order linear differential equations? In this paper, we give a partial answer to this question. We consider first the complex differential equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0 \tag{1.2}
\end{equation*}
$$

where $A(z)$ and $B(z)$ are entire functions of finite order. Before we state our results we define $h(z)$ and $\psi(z)$ by

$$
h=\left|\begin{array}{cccc}
H_{1} & H_{2} & H_{3} & H_{4} \\
H_{5} & H_{6} & H_{7} & H_{8} \\
H_{9} & H_{10} & H_{11} & H_{12} \\
H_{13} & H_{14} & H_{15} & H_{16}
\end{array}\right|
$$

where

$$
\begin{gather*}
H_{1}=d_{1}, \quad H_{2}=0, \quad H_{3}=d_{2}, \quad H_{4}=0, \quad H_{5}=d_{1}^{\prime}, \quad H_{6}=d_{1}, \quad H_{7}=d_{2}^{\prime}, \quad H_{8}=d_{2} \\
H_{9}=d_{1}^{\prime \prime}-d_{1} B, \quad H_{10}=2 d_{1}^{\prime}-d_{1} A, \quad H_{11}=d_{2}^{\prime \prime}-d_{2} B, \quad H_{12}=2 d_{2}^{\prime}-d_{2} A \\
H_{13}=d_{1}^{(3)}-3 d_{1}^{\prime} B+d_{1} A B-d_{1} B^{\prime}, \quad H_{14}=3 d_{1}^{\prime \prime}-2 d_{1}^{\prime} A-d_{1} B+d_{1} A^{2}-d_{1} A^{\prime} \\
H_{15}=d_{2}^{(3)}-3 d_{2}^{\prime} B+d_{2} A B-d_{2} B^{\prime}, \quad H_{16}=3 d_{2}^{\prime \prime}-2 d_{2}^{\prime} A-d_{2} B+d_{2} A^{2}-d_{2} A^{\prime}, \\
\psi(z)=2 \frac{\left(d_{1} d_{2} d_{2}^{\prime}-d_{2}^{2} d_{1}^{\prime}\right)}{h} \varphi^{(3)}+\phi_{2} \varphi^{\prime \prime}+\phi_{1} \varphi^{\prime}+\phi_{0} \varphi \tag{1.3}
\end{gather*}
$$

where $\varphi \not \equiv 0, d_{j}(j=1,2)$ are entire functions of finite order and

$$
\begin{gather*}
\phi_{2}=\frac{2\left(d_{1} d_{2} d_{2}^{\prime}-d_{2}^{2} d_{1}^{\prime}\right) A-3 d_{1} d_{2} d_{2}^{\prime \prime}+3 d_{2}^{2} d_{1}^{\prime \prime}}{h} \tag{1.4}\\
\phi_{1}=\frac{1}{h}\left[6 d_{2}\left(d_{1}^{\prime} d_{2}^{\prime \prime}-d_{2}^{\prime} d_{1}^{\prime \prime}\right)+2 d_{2}\left(d_{1} d_{2}^{\prime}-d_{2} d_{1}^{\prime}\right) B\right. \tag{1.5}\\
\left.+2 d_{2}\left(d_{1} d_{2}^{\prime}-d_{2} d_{1}^{\prime}\right) A^{\prime}+3 d_{2}\left(d_{2} d_{1}^{\prime \prime}-d_{1} d_{2}^{\prime \prime}\right) A\right] \\
\phi_{0}=\frac{1}{h}\left[\left(d_{1} d_{2}^{\prime} d_{2}^{\prime \prime}-3 d_{2} d_{2}^{\prime} d_{1}^{\prime \prime}+2 d_{2} d_{1}^{\prime} d_{2}^{\prime \prime}\right) A\right. \\
+\left(4 d_{1}\left(d_{2}^{\prime}\right)^{2}+3 d_{2}^{2} d_{1}^{\prime \prime}-3 d_{1} d_{2} d_{2}^{\prime \prime}-4 d_{2} d_{1}^{\prime} d_{2}^{\prime}\right) B+2\left(d_{2} d_{1}^{\prime} d_{2}^{\prime}-d_{1}\left(d_{2}^{\prime}\right)^{2}\right) A^{\prime} \tag{1.6}\\
+2\left(d_{1} d_{2} d_{2}^{\prime}-d_{2}^{2} d_{1}^{\prime}\right) B^{\prime}+6\left(d_{2}^{\prime}\right)^{2} d_{1}^{\prime \prime}-2 d_{1} d_{2}^{\prime} d_{2}^{\prime \prime \prime} \\
\left.+2 d_{2} d_{1}^{\prime} d_{2}^{\prime \prime \prime}-3 d_{2} d_{1}^{\prime \prime} d_{2}^{\prime \prime}-6 d_{1}^{\prime} d_{2}^{\prime} d_{2}^{\prime \prime}+3 d_{1}\left(d_{2}^{\prime \prime}\right)^{2}\right]
\end{gather*}
$$

Theorem 1.6. Let $A(z)$ and $B(z)$ be entire functions of finite order such that $\rho(A)<$ $\rho(B)$ and $\tau(A)<\tau(B)<+\infty$ if $\rho(B)=\rho(A)>0$. Let $d_{j}(z)(j=1,2)$ be entire functions that are not all vanishing identically such that $\max \left\{\rho\left(d_{1}\right), \rho\left(d_{2}\right)\right\}<\rho(B)$. If f_{1} and f_{2} are two nontrivial linearly independent solutions of (1.2), then the polynomial of solutions $w=d_{1} f_{1}+d_{2} f_{2}$ satisfies

$$
\rho(w)=\rho\left(f_{1}\right)=\rho\left(f_{2}\right)=\infty
$$

and

$$
\rho_{2}(w)=\rho(B) .
$$

Theorem 1.7. Under the hypotheses of Theorem 1.6, let $\varphi(z) \not \equiv 0$ be an entire function with finite order such that $\psi(z) \not \equiv 0$. If f_{1} and f_{2} are two nontrivial linearly independent solutions of (1.2), then the polynomial of solutions $w=d_{1} f_{1}+d_{2} f_{2}$ satisfies

$$
\begin{equation*}
\bar{\lambda}(w-\varphi)=\lambda(w-\varphi)=\infty \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\lambda}_{2}(w-\varphi)=\lambda_{2}(w-\varphi)=\rho(B) \tag{1.8}
\end{equation*}
$$

Theorem 1.8. Let $A(z)$ and $B(z)$ be entire functions of finite order such that $\rho(A)<$ $\rho(B)$. Let $d_{j}(z), b_{j}(z)(j=1,2)$ be finite order entire functions such that $d_{1}(z) b_{2}(z)-$ $d_{2}(z) b_{1}(z) \not \equiv 0$. If f_{1} and f_{2} are two nontrivial linearly independent solutions of (1.2), then

$$
\rho\left(\frac{d_{1} f_{1}+d_{2} f_{2}}{b_{1} f_{1}+b_{2} f_{2}}\right)=\infty
$$

and

$$
\rho_{2}\left(\frac{d_{1} f_{1}+d_{2} f_{2}}{b_{1} f_{1}+b_{2} f_{2}}\right)=\rho(B)
$$

We consider now the complex differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-2}(z) f^{(k-2)}+\ldots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{1.9}
\end{equation*}
$$

where $A_{0}(z), \ldots, A_{k-2}(z)$ are entire functions. It is clear that the technique of the proof which is used in Theorem 1.6 is not efficient for higher order linear differential equations. Then, the study of growth and oscillation of the polynomial of solutions

$$
\begin{equation*}
P_{k}(f)=\sum_{i=1}^{k} d_{i} f_{i} \tag{1.10}
\end{equation*}
$$

where $d_{i}(z)(i=1, \ldots, k)$ are entire functions of finite order that are not all vanishing identically is more difficult for $k^{t h}$-order linear differential equations. We will give here some sufficient conditions which ensure that $P_{k}(f)$ has infinite order.

Theorem 1.9. Let $k \geq 3$, and let $f_{1}(z), \ldots, f_{k}(z)$ be linearly independent solutions of (1.9) such that $\lambda\left(f_{i}\right)<\infty(i=1, \ldots, k)$, and $d_{i}(z)(i=1, \ldots, k)$ are entire functions of finite order not all vanishing identically, let A_{0} be a transcendental entire function and A_{1}, \ldots, A_{k-2} are entire functions of order less than $\rho\left(A_{0}\right)$ if $\rho\left(A_{0}\right)>0$, and are polynomials if $\rho\left(A_{0}\right)=0$. Then $P_{k}(f)$ is of infinite order.

From Theorem 1.9, we can obtain the following result.
Theorem 1.10. Let $k \geq 3$, and let $f_{1}(z), \ldots, f_{k}(z)(k \geq m)$ be linearly independent solutions of (1.9) such that $\lambda\left(f_{i}\right)<\infty(i=1, \ldots, k)$, and let $d_{i}(z)(i=1, \ldots, k)$, $b_{j}(z)(j=1, \ldots, m)$ be entire functions of finite order such that

$$
Q_{k, m}(f)=\frac{\sum_{i=1}^{k} d_{i} f_{i}}{\sum_{j=1}^{m} b_{j} f_{j}}
$$

is a irreducible rational function in $f_{i}(i=1, \ldots, k)$. Under the hypotheses of Theorem 1.9, $Q_{k, m}(f)$ has infinite order.

2. AUXILIARY LEMMAS

Lemma 2.1 ([4,6]). Let $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ be finite order meromorphic functions. If f is a meromorphic solution of the equation

$$
f^{(k)}+A_{k-1} f^{(k-1)}+\ldots+A_{1} f^{\prime}+A_{0} f=F
$$

with $\rho(f)=+\infty$ and $\rho_{2}(f)=\rho$, then f satisfies

$$
\begin{aligned}
& \bar{\lambda}(f)=\lambda(f)=\rho(f)=+\infty \\
& \bar{\lambda}_{2}(f)=\lambda_{2}(f)=\rho_{2}(f)=\rho
\end{aligned}
$$

Lemma $2.2([10])$. Let $A_{0}(z), \ldots, A_{k-1}(z)$ be entire functions of finite order such that

$$
\max \left\{\rho\left(A_{j}\right): j=1, \ldots, k-1\right\}<\rho\left(A_{0}\right)
$$

Then every solution $f \not \equiv 0$ of the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\ldots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{2.1}
\end{equation*}
$$

satisfies $\rho(f)=+\infty$ and $\rho_{2}(f)=\rho\left(A_{0}\right)$.
Lemma 2.3. Let $A(z)$ and $B(z)$ be entire functions of finite order such that $\rho(A)<$ $\rho(B)$. If f_{1} and f_{2} are two nontrivial linearly independent solutions of (1.2). Then $\frac{f_{1}}{f_{2}}$ is of infinite order and

$$
\rho_{2}\left(\frac{f_{1}}{f_{2}}\right)=\rho(B)
$$

Proof. Suppose that f_{1} and f_{2} are two nontrivial linearly independent solutions of (1.2). Since $\rho(B)>\rho(A)$, then by Lemma 2.2 we have

$$
\begin{equation*}
\rho\left(f_{1}\right)=\rho\left(f_{2}\right)=+\infty, \quad \rho_{2}\left(f_{1}\right)=\rho_{2}\left(f_{2}\right)=\rho(B) \tag{2.2}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\left(\frac{f_{1}}{f_{2}}\right)^{\prime}=-\frac{W\left(f_{1}, f_{2}\right)}{f_{2}^{2}} \tag{2.3}
\end{equation*}
$$

where $W\left(f_{1}, f_{2}\right)=f_{1} f_{2}^{\prime}-f_{2} f_{1}^{\prime}$ is the Wronskian of f_{1} and f_{2}. By using (1.2), we obtain that

$$
\begin{equation*}
W^{\prime}\left(f_{1}, f_{2}\right)=-A(z) W\left(f_{1}, f_{2}\right) \tag{2.4}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
W\left(f_{1}, f_{2}\right)=K \exp \left(-\int A(z) d z\right) \tag{2.5}
\end{equation*}
$$

where $\int A(z) d z$ is the primitive of $A(z)$ and $K \in \mathbb{C} \backslash\{0\}$. By (2.3) and (2.5), we have

$$
\begin{equation*}
\left(\frac{f_{1}}{f_{2}}\right)^{\prime}=-K \frac{\exp \left(-\int A(z) d z\right)}{f_{2}^{2}} \tag{2.6}
\end{equation*}
$$

Since $\rho\left(f_{2}\right)=+\infty$ and $\rho_{2}\left(f_{2}\right)=\rho(B)>\rho(A)$, then from (2.6) we obtain

$$
\rho\left(\frac{f_{1}}{f_{2}}\right)=+\infty, \quad \rho_{2}\left(\frac{f_{1}}{f_{2}}\right)=\rho(B)
$$

Lemma 2.4 ([14]). Let f and g be meromorphic functions such that $0<\rho(f), \rho(g)<$ ∞ and $\tau(f), \tau(g)<\infty$. Then we have:
(i) If $\rho(f)>\rho(g)$, then we obtain

$$
\tau(f+g)=\tau(f g)=\tau(f)
$$

(ii) If $\rho(f)=\rho(g)$ and $\tau(f) \neq \tau(g)$, then we get

$$
\rho(f+g)=\rho(f g)=\rho(f)=\rho(g)
$$

Lemma 2.5 ([3]). Let $k \geq 3$, and let f, g be linearly independent solutions of (1.9), where A_{0} is a transcendental entire function and A_{1}, \ldots, A_{k-2} are entire functions of order less than $\rho\left(A_{0}\right)$ if $\rho\left(A_{0}\right)>0$, and are polynomials if $\rho\left(A_{0}\right)=0$. Then $u=\frac{f}{g}$ has infinite order.
Lemma 2.6 ([18]). Suppose $f_{j}(z)(j=1, \ldots, n+1)$ and $g_{k}(z)(k=1, \ldots, n)(n \geq 1)$ are entire functions satisfying the following conditions:
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)}=f_{n+1}(z)$.
(ii) The order of $f_{j}(z)$ is less than the order of $e^{g_{k}(z)}$ for $1 \leq j \leq n+1,1 \leq k \leq n$. Furthermore, the order of $f_{j}(z)$ is less than the order of $e^{g_{h}(z)-g_{k}(z)}$ for $n \geq 2$ and $1 \leq j \leq n+1,1 \leq h<k \leq n$.

Then $f_{j}(z) \equiv 0(j=1,2, \ldots, n+1)$.
Lemma 2.7 ([12]). Let f be a solution of equation (2.1) where the coefficients $A_{j}(z)(j=0, \ldots, k-1)$ are analytic functions in the disc $\Delta_{R}=\{z \in \mathbb{C}:|z|<R\}$, $0<R \leq \infty$. Let $n_{c} \in\{1, \ldots, k\}$ be the number of nonzero coefficients $A_{j}(z)$ $(j=0, \ldots, k-1)$, and let $\theta \in[0,2 \pi)$ and $\varepsilon>0$. If $z_{\theta}=\nu e^{i \theta} \in \Delta_{R}$ is such that $A_{j}\left(z_{\theta}\right) \neq 0$ for some $j=0, \ldots, k-1$, then for all $\nu<r<R$,

$$
\begin{equation*}
\left|f\left(r e^{i \theta}\right)\right| \leq C \exp \left(n_{c} \int_{\nu}^{r} \max _{j=0, \ldots, k-1}\left|A_{j}\left(t e^{i \theta}\right)\right|^{\frac{1}{k-j}} d t\right) \tag{2.7}
\end{equation*}
$$

where $C>0$ is a constant satisfying

$$
C \leq(1+\varepsilon) \max _{j=0, \ldots, k-1}\left(\frac{\left|f^{(j)}\left(z_{\theta}\right)\right|}{\left(n_{c}\right)^{j} \max _{n=0, \ldots, k-1}\left|A_{n}\left(z_{\theta}\right)\right|^{\frac{j}{k-n}}}\right)
$$

The following lemma is a special case of the result due to T.B. Cao, J.F. Xu and Z.X. Chen in [5].

Lemma 2.8 ([5]). Let f be a meromorphic function with finite order $0<\rho(f)<\infty$ and type $0<\tau(f)<\infty$. Then for any given $\beta<\tau(f)$ there exists a subset I of $[1,+\infty)$ that has infinite logarithmic measure such that $T(r, f)>\beta r^{\rho(f)}$ holds for all $r \in I$.

Lemma 2.9. Let $A(z)$ and $B(z)$ be entire functions such that $\rho(B)=\rho(0<\rho<\infty)$, $\tau(B)=\tau(0<\tau<\infty)$, and let $\rho(A)<\rho(B)$ and $\tau(A)<\tau(B)$ if $\rho(A)=\rho(B)$. If $f \not \equiv 0$ is a solution of the differential equation

$$
f^{\prime \prime}+A(z) f^{\prime}+B(z) f=0
$$

then $\rho(f)=+\infty$ and $\rho_{2}(f)=\rho(B)$.
Proof. If $\rho(A)<\rho(B)$ then by Lemma 2.2, we obtain the result. We prove only the case when $\rho(A)=\rho(B)=\rho$ and $\tau(A)<\tau(B)$. Since $f \not \equiv 0$, then

$$
\begin{equation*}
B=-\left(\frac{f^{\prime \prime}}{f}+A \frac{f^{\prime}}{f}\right) \tag{2.8}
\end{equation*}
$$

Suppose that f is of finite order, then by (2.8) and the lemma of the logarithmic derivative ([11])

$$
T(r, B) \leq T(r, A)+O(\log r)
$$

which implies the contradiction

$$
\tau(B) \leq \tau(A)
$$

Hence $\rho(f)=\infty$. By using inequality (2.7) for $R=\infty$, we have

$$
\begin{equation*}
\rho_{2}(f) \leq \max \{\rho(A), \rho(B)\}=\rho(B) . \tag{2.9}
\end{equation*}
$$

On the other hand, since $\rho(f)=\infty$, then by (2.8) and the lemma of the logarithmic derivative

$$
\begin{equation*}
T(r, B) \leq T(r, A)+S(r, f) \tag{2.10}
\end{equation*}
$$

where $S(r, f)=O(\log T(r, f))+O(\log r)$, possibly outside a set $E_{0} \subset(0,+\infty)$ with a finite linear measure. By $\tau(A)<\tau(B)$, we choose α_{0}, α_{1} satisfying $\tau(A)<\alpha_{1}<$ $\alpha_{0}<\tau(B)$ such that for $r \rightarrow+\infty$, we have

$$
\begin{equation*}
T(r, A) \leq \alpha_{1} r^{\rho} \tag{2.11}
\end{equation*}
$$

By Lemma 2.8, there exists a subset $E_{1} \subset[1,+\infty)$ of infinite logarithmic measure such that

$$
\begin{equation*}
T(r, B)>\alpha_{0} r^{\rho} \tag{2.12}
\end{equation*}
$$

By (2.10)-(2.12), we obtain for all $r \in E_{1} \backslash E_{0}$

$$
\left(\alpha_{0}-\alpha_{1}\right) r^{\rho} \leq O(\log T(r, f))+O(\log r)
$$

which implies

$$
\begin{equation*}
\rho(B)=\rho \leq \rho_{2}(f) \tag{2.13}
\end{equation*}
$$

By using (2.9) and (2.13), we obtain $\rho_{2}(f)=\rho(B)$.
Remark 2.10. Lemma 2.9 was obtained by J. Tu and C.F. Yi in [17] for higher order linear differential equations by using the type τ_{M}.
Lemma 2.11 ([8]). Let $A_{0}, A_{1}, \ldots, A_{k-1}$ be entire functions satisfying:
(i) $\rho\left(A_{j}\right)<\rho\left(A_{0}\right)<\infty(j=1, \ldots, k-1)$ or
(ii) A_{0} being transcendental function with $\rho\left(A_{0}\right)=0$, and A_{1}, \ldots, A_{k-1} being polynomials.

Then every solution $f \not \equiv 0$ of equation (2.1) satisfies $\rho(f)=\infty$.

3. PROOF OF THE THEOREMS

Proof of Theorem 1.6. Suppose that f_{1} and f_{2} are two nontrivial linearly independent solutions of (1.2) and that

$$
\begin{equation*}
w=d_{1} f_{1}+d_{2} f_{2} \tag{3.1}
\end{equation*}
$$

Then, by Lemma 2.9, we have

$$
\rho\left(f_{1}\right)=\rho\left(f_{2}\right)=\infty
$$

and

$$
\rho_{2}\left(f_{1}\right)=\rho_{2}\left(f_{2}\right)=\rho(B)
$$

Suppose that $d_{1}=c d_{2}$, where c is a complex number. Then, by (3.1), we obtain

$$
w=c d_{2} f_{1}+d_{2} f_{2}=\left(c f_{1}+f_{2}\right) d_{2}
$$

Since $f=c f_{1}+f_{2}$ is a solution of (1.2) and $\rho\left(d_{2}\right)<\rho(B)$, then we have

$$
\rho(w)=\rho\left(c f_{1}+f_{2}\right)=\infty
$$

and

$$
\rho_{2}(w)=\rho_{2}\left(c f_{1}+f_{2}\right)=\rho(B) .
$$

Suppose now that $d_{1} \not \equiv c d_{2}$ where c is a complex number. Differentiating both sides of (3.1), we obtain

$$
\begin{equation*}
w^{\prime}=d_{1}^{\prime} f_{1}+d_{1} f_{1}^{\prime}+d_{2}^{\prime} f_{2}+d_{2} f_{2}^{\prime} \tag{3.2}
\end{equation*}
$$

Differentiating both sides of (3.2), we have

$$
\begin{equation*}
w^{\prime \prime}=d_{1}^{\prime \prime} f_{1}+2 d_{1}^{\prime} f_{1}^{\prime}+d_{1} f_{1}^{\prime \prime}+d_{2}^{\prime \prime} f_{2}+2 d_{2}^{\prime} f_{2}^{\prime}+d_{2} f_{2}^{\prime \prime} \tag{3.3}
\end{equation*}
$$

Substituting $f_{j}^{\prime \prime}=-A(z) f_{j}^{\prime}-B(z) f_{j}(j=1,2)$ into equation (3.3), we obtain

$$
\begin{equation*}
w^{\prime \prime}=\left(d_{1}^{\prime \prime}-d_{1} B\right) f_{1}+\left(2 d_{1}^{\prime}-d_{1} A\right) f_{1}^{\prime}+\left(d_{2}^{\prime \prime}-d_{2} B\right) f_{2}+\left(2 d_{2}^{\prime}-d_{2} A\right) f_{2}^{\prime} \tag{3.4}
\end{equation*}
$$

Differentiating both sides of (3.4) and substituting $f_{j}^{\prime \prime}=-A(z) f_{j}^{\prime}-B(z) f_{j}(j=1,2)$, we get

$$
\begin{align*}
w^{\prime \prime \prime}= & \left(d_{1}^{(3)}-3 d_{1}^{\prime} B+d_{1}\left(A B-B^{\prime}\right)\right) f_{1} \\
& +\left(3 d_{1}^{\prime \prime}-2 d_{1}^{\prime} A+d_{1}\left(A^{2}-A^{\prime}-B\right)\right) f_{1}^{\prime} \\
& +\left(d_{2}^{(3)}-3 d_{2}^{\prime} B+d_{2}\left(A B-B^{\prime}\right)\right) f_{2} \tag{3.5}\\
& +\left(3 d_{2}^{\prime \prime}-2 d_{2}^{\prime} A+d_{2}\left(A^{2}-A^{\prime}-B\right)\right) f_{2}^{\prime}
\end{align*}
$$

By (3.1)-(3.5), we have

$$
\left\{\begin{array}{l}
w=d_{1} f_{1}+d_{2} f_{2}, \tag{3.6}\\
w^{\prime}=d_{1}^{\prime} f_{1}+d_{1} f_{1}^{\prime}+d_{2}^{\prime} f_{2}+d_{2} f_{2}^{\prime}, \\
w^{\prime \prime}=\left(d_{1}^{\prime \prime}-d_{1} B\right) f_{1}+\left(2 d_{1}^{\prime}-d_{1} A\right) f_{1}^{\prime}+\left(d_{2}^{\prime \prime}-d_{2} B\right) f_{2}+\left(2 d_{2}^{\prime}-d_{2} A\right) f_{2}^{\prime}, \\
w^{\prime \prime \prime}=\left(d_{1}^{(3)}-3 d_{1}^{\prime} B+d_{1}\left(A B-B^{\prime}\right)\right) f_{1}+\left(3 d_{1}^{\prime \prime}-2 d_{1}^{\prime} A+d_{1}\left(A^{2}-A^{\prime}-B\right)\right) f_{1}^{\prime} \\
+\left(d_{2}^{(3)}-3 d_{2}^{\prime} B+d_{2}\left(A B-B^{\prime}\right)\right) f_{2}+\left(3 d_{2}^{\prime \prime}-2 d_{2}^{\prime} A+d_{2}\left(A^{2}-A^{\prime}-B\right)\right) f_{2}^{\prime} .
\end{array}\right.
$$

To solve this system of equations, we need first to prove that $h \not \equiv 0$. By simple calculations, we obtain

$$
\begin{align*}
h= & \left|\begin{array}{cccc}
H_{1} & H_{2} & H_{3} & H_{4} \\
H_{5} & H_{6} & H_{7} & H_{8} \\
H_{9} & H_{10} & H_{11} & H_{12} \\
H_{13} & H_{14} & H_{15} & H_{16}
\end{array}\right| \\
= & 2\left(d_{1} d_{2}^{\prime}-d_{2} d_{1}^{\prime}\right)^{2} B+\left(d_{2}^{2} d_{1}^{\prime} d_{1}^{\prime \prime}+d_{1}^{2} d_{2}^{\prime} d_{2}^{\prime \prime}-d_{1} d_{2} d_{1}^{\prime} d_{2}^{\prime \prime}-d_{1} d_{2} d_{2}^{\prime} d_{1}^{\prime \prime}\right) A \tag{3.7}\\
& -2\left(d_{1} d_{2}^{\prime}-d_{2} d_{1}^{\prime}\right)^{2} A^{\prime}+2 d_{1} d_{2} d_{1}^{\prime} d_{2}^{\prime \prime \prime}+2 d_{1} d_{2} d_{2}^{\prime} d_{1}^{\prime \prime \prime}-6 d_{1} d_{2} d_{1}^{\prime \prime} d_{2}^{\prime \prime} \\
& -6 d_{1} d_{1}^{\prime} d_{2}^{\prime} d_{2}^{\prime \prime}-6 d_{2} d_{1}^{\prime} d_{2}^{\prime} d_{1}^{\prime \prime} \\
& +6 d_{1}\left(d_{2}^{\prime}\right)^{2} d_{1}^{\prime \prime}+6 d_{2}\left(d_{1}^{\prime}\right)^{2} d_{2}^{\prime \prime}-2 d_{2}^{2} d_{1}^{\prime} d_{1}^{\prime \prime \prime}-2 d_{1}^{2} d_{2}^{\prime} d_{2}^{\prime \prime \prime}+3 d_{1}^{2}\left(d_{2}^{\prime \prime}\right)^{2}+3 d_{2}^{2}\left(d_{1}^{\prime \prime}\right)^{2}
\end{align*}
$$

It is clear that $\left(d_{1} d_{2}^{\prime}-d_{2} d_{1}^{\prime}\right)^{2} \not \equiv 0$ because $d_{1} \neq c d_{2}$. Since $\max \left\{\rho\left(d_{1}\right), \rho\left(d_{2}\right)\right\}<\rho(B)$ and $\left(d_{1} d_{2}^{\prime}-d_{2} d_{1}^{\prime}\right)^{2} \not \equiv 0$, then by using Lemma 2.4 we can deduce

$$
\begin{equation*}
\rho(h)=\rho(B)>0 . \tag{3.8}
\end{equation*}
$$

Hence $h \not \equiv 0$. By Cramer's method, we have

$$
\begin{gather*}
\text { (} \left.\begin{array}{cccc}
w & H_{2} & H_{3} & H_{4} \\
w^{\prime} & H_{6} & H_{7} & H_{8} \\
w^{\prime \prime} & H_{10} & H_{10} & H_{12} \\
w^{(3)} & H_{14} & H_{15} & H_{16}
\end{array} \right\rvert\, \\
f_{1}=\frac{h}{h}=2 \frac{\left(d_{1} d_{2} d_{2}^{\prime}-d_{2}^{2} d_{1}^{\prime}\right)}{h} w^{(3)}+\phi_{2} w^{\prime \prime}+\phi_{1} w^{\prime}+\phi_{0} w \tag{3.9}
\end{gather*}
$$

where $\phi_{j}(j=0,1,2)$ are meromorphic functions of finite order which are defined in (1.4)-(1.6). Suppose now $\rho(w)<\infty$, then by (3.9) we obtain $\rho\left(f_{1}\right)<\infty$ which is a contradiction. Hence $\rho(w)=\infty$. By (3.1), we have $\rho_{2}(w) \leq \rho(B)$. Suppose that $\rho_{2}(w)<\rho(B)$, then by (3.9) we obtain $\rho_{2}\left(f_{1}\right)<\rho(B)$, which is a contradiction. Hence $\rho_{2}(w)=\rho(B)$.

Proof of Theorem 1.7. By Theorem 1.6, we have $\rho(w)=\infty$ and $\rho_{2}(w)=\rho(B)$. Set $g(z)=d_{1} f_{1}+d_{2} f_{2}-\varphi$. Since $\rho(\varphi)<\infty$, then we have $\rho(g)=\rho(w)=\infty$ and $\rho_{2}(g)=$ $\rho_{2}(w)=\rho(B)$. In order to prove $\bar{\lambda}(w-\varphi)=\lambda(w-\varphi)=\infty$ and $\bar{\lambda}_{2}(w-\varphi)=$ $\lambda_{2}(w-\varphi)=\rho(B)$, we need to prove only $\bar{\lambda}(g)=\lambda(g)=\infty$ and $\bar{\lambda}_{2}(g)=\lambda_{2}(g)=$ $\rho(B)$. By $w=g+\varphi$, we get from (3.9)

$$
\begin{equation*}
f_{1}=2 \frac{\left(d_{1} d_{2} d_{2}^{\prime}-d_{2}^{2} d_{1}^{\prime}\right)}{h} g^{(3)}+\phi_{2} g^{\prime \prime}+\phi_{1} g^{\prime}+\phi_{0} g+\psi \tag{3.10}
\end{equation*}
$$

where

$$
\psi=2 \frac{\left(d_{1} d_{2} d_{2}^{\prime}-d_{2}^{2} d_{1}^{\prime}\right)}{h} \varphi^{(3)}+\phi_{2} \varphi^{\prime \prime}+\phi_{1} \varphi^{\prime}+\phi_{0} \varphi
$$

Substituting (3.10) into equation (1.2), we obtain

$$
\frac{2\left(d_{1} d_{2} d_{2}^{\prime}-d_{2}^{2} d_{1}^{\prime}\right)}{h} g^{(5)}+\sum_{j=0}^{4} \beta_{j} g^{(j)}=-\left(\psi^{\prime \prime}+A(z) \psi^{\prime}+B(z) \psi\right)=F(z)
$$

where $\beta_{j}(j=0, \ldots, 4)$ are meromorphic functions of finite order. Since $\psi \not \equiv 0$ and $\rho(\psi)<\infty$, it follows that ψ is not a solution of (1.2), which implies that $F(z) \not \equiv 0$. Then, by applying Lemma 2.1, we obtain (1.7) and (1.8).

Proof of Theorem 1.8. Suppose that f_{1} and f_{2} are two nontrivial linearly independent solutions of (1.2). Then by Lemma 2.3, we have

$$
\rho\left(\frac{f_{1}}{f_{2}}\right)=+\infty, \quad \rho_{2}\left(\frac{f_{1}}{f_{2}}\right)=\rho(B) .
$$

Set $g=\frac{f_{1}}{f_{2}}$. Then

$$
\begin{equation*}
w(z)=\frac{d_{1}(z) f_{1}(z)+d_{2}(z) f_{2}(z)}{b_{1}(z) f_{1}(z)+b_{1}(z) f_{2}(z)}=\frac{d_{1}(z) g(z)+d_{2}(z)}{b_{1}(z) g(z)+b_{2}(z)} . \tag{3.11}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\rho(w) & \leq \rho(g)=+\infty \\
\rho_{2}(w) & \leq \max \left\{\rho_{2}\left(d_{j}\right), \rho_{2}\left(b_{j}\right)(j=1,2), \rho_{2}(g)\right\}=\rho_{2}(g) \tag{3.12}
\end{align*}
$$

On the other hand, we have

$$
g(z)=-\frac{b_{2}(z) w(z)-d_{2}(z)}{b_{1}(z) w(z)-d_{1}(z)}
$$

which implies that

$$
\begin{align*}
+\infty & =\rho(g) \leq \rho(w), \tag{3.13}\\
\rho_{2}(g) & \leq \max \left\{\rho_{2}\left(d_{j}\right), \rho_{2}\left(b_{j}\right)(j=1,2), \rho_{2}(w)\right\}=\rho_{2}(w) .
\end{align*}
$$

By using (3.12) and (3.13), we obtain

$$
\rho(w)=\rho(g)=+\infty, \quad \rho_{2}(w)=\rho_{2}(g)=\rho(B)
$$

Proof of Theorem 1.9. Under the conditions of Theorem 1.9 and Lemma 2.11 we have

$$
\rho\left(f_{j}\right)=\infty \quad(j=1, \ldots, k) .
$$

By Hadamard factorization,

$$
\begin{equation*}
f_{j}(z)=\Pi_{j} e^{h_{j}(z)} \quad(j=1, \ldots, k) \tag{3.14}
\end{equation*}
$$

where Π_{j} is the canonical product of zeros of $f_{j}(z)$ such that

$$
\lambda\left(f_{j}\right)=\rho\left(\Pi_{j}\right)<\infty
$$

and $h_{j}(z)(j=1, \ldots, k)$ are transcendental entire functions. Suppose that $P_{k}(f)$ is of finite order, then

$$
\begin{equation*}
P_{k}(f)=\Pi_{k+1} e^{h_{k+1}(z)} \tag{3.15}
\end{equation*}
$$

where $h_{k+1}(z)$ is a polynomial and Π_{k+1} is the canonical product of zeros of $P_{k}(f)$. By (3.14) and (3.15), we have

$$
\begin{equation*}
\sum_{j=1}^{k} d_{j} \Pi_{j} e^{h_{j}(z)}=\Pi_{k+1} e^{h_{k+1}(z)} \tag{3.16}
\end{equation*}
$$

Since $h_{j}(z)(j=1, \ldots, k)$ are transcendental entire functions, then by (3.16), we obtain

$$
\begin{equation*}
\max \left\{\rho\left(d_{j} \Pi_{j}\right)(j=1, \ldots, k), \rho\left(\Pi_{k+1} e^{h_{k+1}}\right)\right\}<\rho\left(e^{h_{j}}\right)=\infty \tag{3.17}
\end{equation*}
$$

By using Lemma 2.5, for any two linearly independent solutions f_{p} and f_{q}, where $1 \leq p<q \leq k$, the quotient $\frac{f_{p}}{f_{q}}$ has infinite order. Then

$$
\begin{equation*}
\max \left\{\rho\left(d_{j} \Pi_{j}\right)(j=1, \ldots, k), \rho\left(\Pi_{k+1} e^{h_{k+1}}\right)\right\}<\rho\left(e^{h_{p}-h_{q}}\right)=\infty . \tag{3.18}
\end{equation*}
$$

By (3.17), (3.18) and Lemma 2.6, we have $d_{j} \equiv 0(j=1, \ldots, k)$ which is a contradiction. Hence $P_{k}(f)$ is of infinite order.
Proof of Theorem 1.10. Suppose that $Q_{k, m}(f)$ is of finite order. Then

$$
\begin{equation*}
\frac{\sum_{i=1}^{k} d_{i} f_{i}}{\sum_{j=1}^{m} b_{j} f_{j}}=\Pi_{k+1} e^{h_{k+1}(z)} \tag{3.19}
\end{equation*}
$$

where $h_{k+1}(z)$ is a polynomial and Π_{k+1} is the canonical product of zeros of $Q_{k, m}(f)$. The equality (3.19) is equivalent to

$$
\begin{equation*}
\sum_{i=1}^{m}\left(d_{i}-b_{i} \Pi_{k+1} e^{h_{k+1}(z)}\right) f_{i}+d_{m+1} f_{m+1}+\ldots+d_{k} f_{k}=0 \tag{3.20}
\end{equation*}
$$

By Hadamard factorization,

$$
f_{i}(z)=\Pi_{i} e^{h_{i}(z)}(i=1, \ldots, k)
$$

By the same reasoning as Theorem 1.9, and by using Lemma 2.6 we obtain $d_{i} \equiv 0$ $(i=1, \ldots, k)$ which is a contradiction. Hence $Q_{k, m}(f)$ is of infinite order.

4. OPEN QUESTION

It is interesting to study the hyper-order and oscillation of the combination

$$
P_{k}(f)=\sum_{i=1}^{k} d_{i} f_{i}
$$

where $f_{i}(i=1, \ldots, k)$ are linearly independent solutions of (1.9) and $d_{i}(i=1, \ldots, k)$ are entire functions of finite order not all vanishing identically.

REFERENCES

[1] S. Bank, I. Laine, On the oscillation theory of $f^{\prime \prime}+A(z) f=0$ where A is entire, Trans. Amer. Math. Soc. 273 (1982) 1, 351-363.
[2] S. Bank, I. Laine, On the zeros of meromorphic solutions and second-order linear differential equations, Comment. Math. Helv. 58 (1983) 4, 656-677.
[3] S. Bank, J.K. Langley, Oscillation theory for higher order linear differential equations with entire coefficients, Complex Variables 16 (1991) 2-3, 163-175.
[4] B. Belaïdi, Growth and oscillation theory of solutions of some linear differential equations, Mat. Vesnik 60 (2008) 4, 233-246.
[5] T.B. Cao, J.F. Xu, Z.X. Chen, On the meromorphic solutions of linear differential equations on the complex plane, J. Math. Anal. Appl. 364 (2010) 1, 130-142.
[6] Z.X. Chen, Zeros of meromorphic solutions of higher order linear differential equations, Analysis 14 (1994) 4, 425-438.
[7] Z.X. Chen, The fixed points and hyper-order of solutions of second order complex differential equations, Acta Math. Sci. Ser. A Chin. Ed. 20 (2000) 3, 425-432 [in Chinese].
[8] Z.X. Chen, S.A. Gao, The complex oscillation theory of certain nonhomogeneous linear differential equations with transcendental entire coefficients, J. Math. Anal. Appl. 179 (1993) 2, 403-416.
[9] Z.X. Chen, C.C. Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J. 22 (1999) 2, 273-285.
[10] Z.X. Chen, C.C. Yang, Quantitative estimations on the zeros and growths of entire solutions of linear differential equations, Complex Variables Theory Appl. 42 (2000) 2, 119-133.
[11] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[12] J. Heittokangas, R. Korhonen, J. Rättyä, Growth estimates for solutions of linear complex differential equations, Ann. Acad. Sci. Fenn. Math. 29 (2004) 1, 233-246.
[13] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Studies in Mathematics, Vol. 15, Walter de Gruyter \& Co., Berlin-New York, 1993.
[14] Z. Latreuch, B. Belaïdi, New estimations about the order of growth and the type of meromorphic functions in the complex plane, An. Univ. Oradea, Fasc. Mat. 20 (2013) 1, 169-176.
[15] Z. Latreuch, B. Belaïdi, Some properties of solutions of second order linear differential equations, J. Complex Anal. 2013, Art. ID 253168, 5 pp.
[16] B.Ya. Levin, Lectures on entire functions, Translations of Mathematical Monographs, Vol. 150, American Mathematical Society, Providence, RI, 1996. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko; Translated from the Russian manuscript by Tkachenko.
[17] J. Tu, C.F. Yi, On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order, J. Math. Anal. Appl. 340 (2008) 1, 487-497.
[18] C.C. Yang, H.X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, Vol. 557, Kluwer Academic Publishers Group, Dordrecht, 2003.

Zinelâabidine Latreuch
 z.latreuch@gmail.com

University of Mostaganem (UMAB)
Department of Mathematics
Laboratory of Pure and Applied Mathematics
B. P. 227 Mostaganem, Algeria

Benharrat Belaïdi

belaidi@univ-mosta.dz

University of Mostaganem (UMAB)
Department of Mathematics
Laboratory of Pure and Applied Mathematics
B. P. 227 Mostaganem, Algeria

Received: June 30, 2013.
Accepted: April 11, 2014.

